↓ Skip to main content

Mitochondria

Overview of attention for book
Cover of 'Mitochondria'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Guide to Computational Methods for Predicting Mitochondrial Localization
  3. Altmetric Badge
    Chapter 2 Isolation of Functional Mitochondria from Cultured Cells and Mouse Tissues
  4. Altmetric Badge
    Chapter 3 Isolation of Mitochondria from Saccharomyces cerevisiae
  5. Altmetric Badge
    Chapter 4 Isolation of Contact Sites Between Inner and Outer Mitochondrial Membranes
  6. Altmetric Badge
    Chapter 5 Isolation of Mitochondria-Associated Membranes (MAM) from Mouse Brain Tissue
  7. Altmetric Badge
    Chapter 6 Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and “Total Protein Approach”
  8. Altmetric Badge
    Chapter 7 Quantitative Analysis of Glycerophospholipids in Mitochondria by Mass Spectrometry
  9. Altmetric Badge
    Chapter 8 Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells
  10. Altmetric Badge
    Chapter 9 Chemical Crosslinking in Intact Mitochondria
  11. Altmetric Badge
    Chapter 10 Reconstitution of Mitochondrial Membrane Proteins into Nanodiscs by Cell-Free Expression
  12. Altmetric Badge
    Chapter 11 Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast
  13. Altmetric Badge
    Chapter 12 Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation
  14. Altmetric Badge
    Chapter 13 Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer
  15. Altmetric Badge
    Chapter 14 Application of FRET-Based Biosensor “ATeam” for Visualization of ATP Levels in the Mitochondrial Matrix of Living Mammalian Cells
  16. Altmetric Badge
    Chapter 15 A Microplate-Based Bioluminescence Assay of Mitochondrial Calcium Uptake
  17. Altmetric Badge
    Chapter 16 New Imaging Tools to Analyze Mitochondrial Morphology in Caenorhabditis elegans
  18. Altmetric Badge
    Chapter 17 Single Molecule Tracking and Localization of Mitochondrial Protein Complexes in Live Cells
  19. Altmetric Badge
    Chapter 18 Analysis of Yeast Mitochondria by Electron Microscopy
  20. Altmetric Badge
    Chapter 19 Analysis of Mitochondrial Membrane Protein Complexes by Electron Cryo-tomography
  21. Altmetric Badge
    Chapter 20 Assays for Mitophagy in Yeast
  22. Altmetric Badge
    Chapter 21 Assessing Mitochondrial Selective Autophagy in the Nematode Caenorhabditis elegans
  23. Altmetric Badge
    Chapter 22 Assessing Mitochondrial Unfolded Protein Response in Mammalian Cells
  24. Altmetric Badge
    Chapter 23 Analysis of Mitochondrial RNA-Processing Defects in Patient-Derived Tissues by qRT-PCR and RNAseq
  25. Altmetric Badge
    Chapter 24 Identification of Disease-Causing Mutations by Functional Complementation of Patient-Derived Fibroblast Cell Lines
Attention for Chapter 11: Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast
Altmetric Badge

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast
Chapter number 11
Book title
Mitochondria
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6824-4_11
Pubmed ID
Book ISBNs
978-1-4939-6822-0, 978-1-4939-6824-4
Authors

Reut Ben-Menachem, Ophry Pines

Editors

Dejana Mokranjac, Fabiana Perocchi

Abstract

Eukaryotic cells are defined by the existence of subcellular compartments and organelles. The localization of a protein to a specific subcellular compartment is one of the most fundamental processes of a living cell. It is well documented that in eukaryotic cells molecules of a single protein can be located in more than one subcellular compartment, a phenomenon termed dual targeting, bimodal targeting, or dual localization. Recently, growing evidence started to accumulate for abundant dual targeting of mitochondrial proteins, which are localized to a second location in the cell, besides this specific organelle. We have termed these dual localized proteins echoforms or echoproteins (echo in Greek denotes repetition). As the research on dual targeting of proteins is developing and evidence is accumulating for high abundance of the phenomenon, there is a growing need for new methods that would allow the identification of dual localized proteins and analysis of their functions in each subcellular compartment. This is particularly critical for single translation products that are encoded by the same gene and are actually derived from the same protein but nevertheless distribute between different subcellular compartments. The above considerations have led us to develop several approaches for studying dual localized proteins and their dual function. These include an α-complementation-based assay, specific depletion, and selection of the individual echoproteins.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 21%
Student > Bachelor 3 21%
Researcher 2 14%
Student > Doctoral Student 1 7%
Unknown 5 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 36%
Agricultural and Biological Sciences 2 14%
Immunology and Microbiology 1 7%
Unknown 6 43%