↓ Skip to main content

Mitochondria

Overview of attention for book
Cover of 'Mitochondria'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Guide to Computational Methods for Predicting Mitochondrial Localization
  3. Altmetric Badge
    Chapter 2 Isolation of Functional Mitochondria from Cultured Cells and Mouse Tissues
  4. Altmetric Badge
    Chapter 3 Isolation of Mitochondria from Saccharomyces cerevisiae
  5. Altmetric Badge
    Chapter 4 Isolation of Contact Sites Between Inner and Outer Mitochondrial Membranes
  6. Altmetric Badge
    Chapter 5 Isolation of Mitochondria-Associated Membranes (MAM) from Mouse Brain Tissue
  7. Altmetric Badge
    Chapter 6 Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and “Total Protein Approach”
  8. Altmetric Badge
    Chapter 7 Quantitative Analysis of Glycerophospholipids in Mitochondria by Mass Spectrometry
  9. Altmetric Badge
    Chapter 8 Detection of Cysteine Redox States in Mitochondrial Proteins in Intact Mammalian Cells
  10. Altmetric Badge
    Chapter 9 Chemical Crosslinking in Intact Mitochondria
  11. Altmetric Badge
    Chapter 10 Reconstitution of Mitochondrial Membrane Proteins into Nanodiscs by Cell-Free Expression
  12. Altmetric Badge
    Chapter 11 Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast
  13. Altmetric Badge
    Chapter 12 Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation
  14. Altmetric Badge
    Chapter 13 Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer
  15. Altmetric Badge
    Chapter 14 Application of FRET-Based Biosensor “ATeam” for Visualization of ATP Levels in the Mitochondrial Matrix of Living Mammalian Cells
  16. Altmetric Badge
    Chapter 15 A Microplate-Based Bioluminescence Assay of Mitochondrial Calcium Uptake
  17. Altmetric Badge
    Chapter 16 New Imaging Tools to Analyze Mitochondrial Morphology in Caenorhabditis elegans
  18. Altmetric Badge
    Chapter 17 Single Molecule Tracking and Localization of Mitochondrial Protein Complexes in Live Cells
  19. Altmetric Badge
    Chapter 18 Analysis of Yeast Mitochondria by Electron Microscopy
  20. Altmetric Badge
    Chapter 19 Analysis of Mitochondrial Membrane Protein Complexes by Electron Cryo-tomography
  21. Altmetric Badge
    Chapter 20 Assays for Mitophagy in Yeast
  22. Altmetric Badge
    Chapter 21 Assessing Mitochondrial Selective Autophagy in the Nematode Caenorhabditis elegans
  23. Altmetric Badge
    Chapter 22 Assessing Mitochondrial Unfolded Protein Response in Mammalian Cells
  24. Altmetric Badge
    Chapter 23 Analysis of Mitochondrial RNA-Processing Defects in Patient-Derived Tissues by qRT-PCR and RNAseq
  25. Altmetric Badge
    Chapter 24 Identification of Disease-Causing Mutations by Functional Complementation of Patient-Derived Fibroblast Cell Lines
Attention for Chapter 12: Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation
Chapter number 12
Book title
Mitochondria
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6824-4_12
Pubmed ID
Book ISBNs
978-1-4939-6822-0, 978-1-4939-6824-4
Authors

Dmitry Zabezhinsky, Hannah Sperber, Jeffrey E. Gerst

Editors

Dejana Mokranjac, Fabiana Perocchi

Abstract

Mitochondria are thought to have evolved from ancestral proteobacteria and, as a result of symbiosis, became an indispensable organelle in all eukaryotic cells. Mitochondria perform essential functions that provide the cell with ATP, amino acids, phospholipids, and both heme and iron-sulfur clusters. However, only 1% of mitochondrial proteins are encoded by the mitochondrial genome, while the remaining 99% are encoded in the nucleus. This raises a logistical challenge to the cell, as these nuclear-encoded proteins have to be translated, delivered to the mitochondrial surface, and translocated to its various compartments. Over the past decade, it was shown that subsets of mRNAs encoding mitochondrial proteins (mMPs) are localized to the mitochondrial surface in both yeast and mammalian cells. Moreover, factors (e.g., RNA-binding proteins) have been discovered that facilitate mMP targeting, and their loss leads to RNA mislocalization and defects in mitochondrial function (e.g., deficient respiration). Therefore, there is a demand in the field of mitochondrial biology to accurately measure mMP localization to the mitochondrial surface. In this chapter, we describe two techniques that allow for the visualization of mMPs using single-molecule fluorescent in situ hybridization and preparation of a highly enriched mitochondrial fraction followed by quantitative real-time PCR. Together, these techniques constitute powerful tools to link changes in mMP trafficking to defects in mitochondrial physiology.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 50%
Student > Bachelor 2 33%
Unknown 1 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 50%
Biochemistry, Genetics and Molecular Biology 1 17%
Unknown 2 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2017.
All research outputs
#18,541,268
of 22,963,381 outputs
Outputs from Methods in molecular biology
#7,935
of 13,136 outputs
Outputs of similar age
#234,975
of 307,884 outputs
Outputs of similar age from Methods in molecular biology
#164
of 281 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,136 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 307,884 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 281 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.