↓ Skip to main content

Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity

Overview of attention for book
Cover of 'Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Epidemiology of Gender Differences in Diabetes and Obesity
  3. Altmetric Badge
    Chapter 2 Sex Differences in Body Composition
  4. Altmetric Badge
    Chapter 3 Cellular Mechanisms Driving Sex Differences in Adipose Tissue Biology and Body Shape in Humans and Mouse Models
  5. Altmetric Badge
    Chapter 4 Men Are from Mars, Women Are from Venus: Sex Differences in Insulin Action and Secretion
  6. Altmetric Badge
    Chapter 5 The Role of Sex and Sex Hormones in Regulating Obesity-Induced Inflammation
  7. Altmetric Badge
    Chapter 6 Sex Differences in Leptin Control of Cardiovascular Function in Health and Metabolic Diseases
  8. Altmetric Badge
    Chapter 7 Sex Effects at the Ramparts: Nutrient- and Microbe-Mediated Regulation of the Immune-Metabolic Interface
  9. Altmetric Badge
    Chapter 8 Sexual Dimorphism and Estrogen Action in Mouse Liver
  10. Altmetric Badge
    Chapter 9 Sex Differences in Muscle Wasting
  11. Altmetric Badge
    Chapter 10 Origins and Functions of the Ventrolateral VMH: A Complex Neuronal Cluster Orchestrating Sex Differences in Metabolism and Behavior
  12. Altmetric Badge
    Chapter 11 Menopause, Estrogens, and Glucose Homeostasis in Women
  13. Altmetric Badge
    Chapter 12 Role of Estrogens in the Regulation of Liver Lipid Metabolism
  14. Altmetric Badge
    Chapter 13 The Role of Skeletal Muscle Estrogen Receptors in Metabolic Homeostasis and Insulin Sensitivity
  15. Altmetric Badge
    Chapter 14 Estrogens and Body Weight Regulation in Men
  16. Altmetric Badge
    Chapter 15 Estradiol Regulation of Brown Adipose Tissue Thermogenesis
  17. Altmetric Badge
    Chapter 16 Brain Estrogens and Feeding Behavior
  18. Altmetric Badge
    Chapter 17 Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation
  19. Altmetric Badge
    Chapter 18 The Role of Estrogens in Pancreatic Islet Physiopathology
  20. Altmetric Badge
    Chapter 19 Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis
  21. Altmetric Badge
    Chapter 20 G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis
  22. Altmetric Badge
    Chapter 21 Sex-Dependent Role of Estrogen Sulfotransferase and Steroid Sulfatase in Metabolic Homeostasis
  23. Altmetric Badge
    Chapter 22 Negative Impact of Testosterone Deficiency and 5α-Reductase Inhibitors Therapy on Metabolic and Sexual Function in Men
  24. Altmetric Badge
    Chapter 23 Testosterone Therapy and Glucose Homeostasis in Men with Testosterone Deficiency (Hypogonadism)
  25. Altmetric Badge
    Chapter 24 Sex Differences in Androgen Regulation of Metabolism in Nonhuman Primates
  26. Altmetric Badge
    Chapter 25 Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep
  27. Altmetric Badge
    Chapter 26 The Role of Androgen Excess in Metabolic Dysfunction in Women
  28. Altmetric Badge
    Chapter 27 Sex, Gender, and Transgender: Metabolic Impact of Cross Hormone Therapy
Attention for Chapter 15: Estradiol Regulation of Brown Adipose Tissue Thermogenesis
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Estradiol Regulation of Brown Adipose Tissue Thermogenesis
Chapter number 15
Book title
Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-3-319-70178-3_15
Pubmed ID
Book ISBNs
978-3-31-970177-6, 978-3-31-970178-3
Authors

Ismael González-García, Manuel Tena-Sempere, Miguel López

Abstract

Physiologically, estrogens carry out a myriad of functions, the most essential being the regulation of the reproductive axis. Currently, it is also dogmatic that estrogens play an important role modulating energy balance and metabolism. In this sense, it is well known that low estrogens levels, occurring due to ovarian insufficiency, in conditions such as menopause or ovariectomy (OVX), are associated with increased food intake and decreased energy expenditure, leading to weight gain and obesity at long term. Concerning energy expenditure, the main effect of estradiol (E2) is on brown adipose tissue (BAT) thermogenesis. Thus, acting through a peripheral or a central action, E2 activates brown fat activity and increases body temperature, which is negatively associated with body weight. Centrally, the hypothalamic AMP-activated protein kinase (AMPK) mediates the E2 action on BAT thermogenesis. In this chapter, we will summarize E2 regulation of BAT thermogenesis and how this can influence energy balance and metabolism in general.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 14%
Student > Ph. D. Student 5 12%
Other 2 5%
Student > Master 2 5%
Professor > Associate Professor 2 5%
Other 4 10%
Unknown 21 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 26%
Neuroscience 3 7%
Nursing and Health Professions 2 5%
Medicine and Dentistry 1 2%
Agricultural and Biological Sciences 1 2%
Other 0 0%
Unknown 24 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2017.
All research outputs
#18,578,649
of 23,011,300 outputs
Outputs from Advances in experimental medicine and biology
#3,325
of 4,960 outputs
Outputs of similar age
#311,468
of 421,287 outputs
Outputs of similar age from Advances in experimental medicine and biology
#333
of 490 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,960 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,287 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 490 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.