↓ Skip to main content

RNA Methylation

Overview of attention for book
RNA Methylation
Springer New York

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 LC-MS Analysis of Methylated RNA
  3. Altmetric Badge
    Chapter 2 Comparative Analysis of Ribonucleic Acid Digests (CARD) by Mass Spectrometry
  4. Altmetric Badge
    Chapter 3 Liquid Chromatography-Mass Spectrometry for Analysis of RNA Adenosine Methylation
  5. Altmetric Badge
    Chapter 4 Genome-Wide Location Analyses of N6-Methyladenosine Modifications (m6A-Seq)
  6. Altmetric Badge
    Chapter 5 Mapping m6A at Individual-Nucleotide Resolution Using Crosslinking and Immunoprecipitation (miCLIP)
  7. Altmetric Badge
    Chapter 6 Detection and Quantification of N 6-Methyladenosine in Messenger RNA by TLC
  8. Altmetric Badge
    Chapter 7 Illustrating the Epitranscriptome at Nucleotide Resolution Using Methylation-iCLIP (miCLIP)
  9. Altmetric Badge
    Chapter 8 Detection of 5-Methylcytosine in Specific Poly(A) RNAs by Bisulfite Sequencing
  10. Altmetric Badge
    Chapter 9 Transcriptome-Wide Detection of 5-Methylcytosine by Bisulfite Sequencing
  11. Altmetric Badge
    Chapter 10 Analysis of High-Throughput RNA Bisulfite Sequencing Data
  12. Altmetric Badge
    Chapter 11 Statistical Methods for Transcriptome-Wide Analysis of RNA Methylation by Bisulfite Sequencing
  13. Altmetric Badge
    Chapter 12 High-Throughput Mapping of 2′-O-Me Residues in RNA Using Next-Generation Sequencing (Illumina RiboMethSeq Protocol)
  14. Altmetric Badge
    Chapter 13 RiboMeth-seq: Profiling of 2′-O-Me in RNA
  15. Altmetric Badge
    Chapter 14 In Silico Identification of RNA Modifications from High-Throughput Sequencing Data Using HAMR
  16. Altmetric Badge
    Chapter 15 High-Throughput Small RNA Sequencing Enhanced by AlkB-Facilitated RNA de-Methylation (ARM-Seq)
  17. Altmetric Badge
    Chapter 16 Transcriptome-Wide Mapping of N 1-Methyladenosine Methylome
  18. Altmetric Badge
    Chapter 17 In Vitro Assays for RNA Methyltransferase Activity
  19. Altmetric Badge
    Chapter 18 Crosslinking Methods to Identify RNA Methyltransferase Targets In Vivo
  20. Altmetric Badge
    Chapter 19 Methylated mRNA Nucleotides as Regulators for Ribosomal Translation
  21. Altmetric Badge
    Chapter 20 Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA
Attention for Chapter 20: Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA
Chapter number 20
Book title
RNA Methylation
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6807-7_20
Pubmed ID
Book ISBNs
978-1-4939-6805-3, 978-1-4939-6807-7
Authors

Riml, Christian, Micura, Ronald, Christian Riml, Ronald Micura

Editors

Alexandra Lusser

Abstract

5-Hydroxymethylcytosine is an epigenetic base modification that is part of the demethylation pathway of 5-methylcytosine in DNA. 5-Methylcytosine is iteratively oxidized to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine by enzymes of the TET protein family. Since the discovery of 5-hydroxymethylcytosine also in RNA its role in regulatory processes and metabolism remains elusive. To gain more insight into the function of RNA containing 5-hydroxymethylcytidine, innovative and interdisciplinary approaches are required. In this context, synthetic oligoribonucleotides containing 5-hyroxymethylcytidine are an inevitable tool. Therefore, in this chapter, we present the efficient synthesis of RNA oligonucleotides containing 5-hydroxymethylcytosine by solid-phase synthesis. The incorporation of the modified cytosine derivative into RNA is compatible with standard phosphoramidite-based synthesis procedures of oligoribonucleotides.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 60%
Professor > Associate Professor 1 20%
Unknown 1 20%
Readers by discipline Count As %
Chemistry 2 40%
Nursing and Health Professions 1 20%
Biochemistry, Genetics and Molecular Biology 1 20%
Unknown 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2017.
All research outputs
#22,149,778
of 24,716,872 outputs
Outputs from Methods in molecular biology
#10,687
of 13,880 outputs
Outputs of similar age
#275,308
of 313,295 outputs
Outputs of similar age from Methods in molecular biology
#228
of 295 outputs
Altmetric has tracked 24,716,872 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,880 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,295 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 295 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.