↓ Skip to main content

Telomeres and Telomerase

Overview of attention for book
Cover of 'Telomeres and Telomerase'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Telomeres and Telomerase
  3. Altmetric Badge
    Chapter 2 Analysis of Average Telomere Length in Human Telomeric Protein Knockout Cells Generated by CRISPR/Cas9
  4. Altmetric Badge
    Chapter 3 Telomere Length Analysis by Quantitative Fluorescent in Situ Hybridization (Q-FISH)
  5. Altmetric Badge
    Chapter 4 Telomere Strand-Specific Length Analysis by Fluorescent In Situ Hybridization (Q-CO-FISH)
  6. Altmetric Badge
    Chapter 5 Telomere G-Rich Overhang Length Measurement: DSN Method
  7. Altmetric Badge
    Chapter 6 Telomere G-Overhang Length Measurement Method 2: G-Tail Telomere HPA
  8. Altmetric Badge
    Chapter 7 Telomere Terminal G/C Strand Synthesis: Measuring Telomerase Action and C-Rich Fill-In
  9. Altmetric Badge
    Chapter 8 Analysis of Yeast Telomerase by Primer Extension Assays
  10. Altmetric Badge
    Chapter 9 Assessing Telomerase Activities in Mammalian Cells Using the Quantitative PCR-Based Telomeric Repeat Amplification Protocol (qTRAP)
  11. Altmetric Badge
    Chapter 10 Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™)
  12. Altmetric Badge
    Chapter 11 Visualization of Human Telomerase Localization by Fluorescence Microscopy Techniques
  13. Altmetric Badge
    Chapter 12 Cytogenetic Analysis of Telomere Dysfunction
  14. Altmetric Badge
    Chapter 13 Probing the Telomere Damage Response
  15. Altmetric Badge
    Chapter 14 Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins
  16. Altmetric Badge
    Chapter 15 Using Protein-Fragment Complementation Assays (PCA) and Peptide Arrays to Study Telomeric Protein-Protein Interactions
  17. Altmetric Badge
    Chapter 16 In Vitro Preparation and Crystallization of Vertebrate Telomerase Subunits
  18. Altmetric Badge
    Chapter 17 Human Telomeric G-Quadruplex Structures and G-Quadruplex-Interactive Compounds
  19. Altmetric Badge
    Chapter 18 Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization
  20. Altmetric Badge
    Chapter 19 Analysis of Telomere Proteins by Chromatin Immunoprecipitation (ChIP)
Attention for Chapter 16: In Vitro Preparation and Crystallization of Vertebrate Telomerase Subunits
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Vitro Preparation and Crystallization of Vertebrate Telomerase Subunits
Chapter number 16
Book title
Telomeres and Telomerase
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6892-3_16
Pubmed ID
Book ISBNs
978-1-4939-6891-6, 978-1-4939-6892-3
Authors

Jing Huang, Christopher J. Bley, Dustin P. Rand, Julian J. L. Chen, Ming Lei

Editors

Zhou Songyang

Abstract

Telomerase is a unique reverse transcriptase that replicates the telomeric DNA at most eukaryotic chromosomal ends. The telomerase consists of the catalytic protein subunit TERT and the RNA component TR that provides the template for telomeric DNA synthesis. In vitro reconstitution of telomerase core components in large quantity is the prerequisite to studying the catalytic mechanisms of telomerase at the structural level; however, large-scale preparation of recombinant telomerase, especially that of higher eukaryotes, has been a big challenge for a long time. It has been known that the CR4/5 domain of the vertebrate TR binds to the TRBD domain of TERT and the interaction is essential to the assembly and enzymatic activity of telomerase. We assembled the TRBD-CR4/5 ribonucleoprotein complex of the medaka fish telomerase in vitro and determined its atomic structure through X-ray crystallography. Our study provides the structural insight into the RNA-protein recognition mechanism that is common to most eukaryotic telomerase. The methods of our study are also applicable to large-scale preparations of other ribonucleoprotein complexes for structural studies.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 33%
Other 2 33%
Student > Bachelor 1 17%
Student > Master 1 17%
Readers by discipline Count As %
Medicine and Dentistry 2 33%
Agricultural and Biological Sciences 1 17%
Chemistry 1 17%
Psychology 1 17%
Unknown 1 17%