↓ Skip to main content

Telomeres and Telomerase

Overview of attention for book
Cover of 'Telomeres and Telomerase'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Telomeres and Telomerase
  3. Altmetric Badge
    Chapter 2 Analysis of Average Telomere Length in Human Telomeric Protein Knockout Cells Generated by CRISPR/Cas9
  4. Altmetric Badge
    Chapter 3 Telomere Length Analysis by Quantitative Fluorescent in Situ Hybridization (Q-FISH)
  5. Altmetric Badge
    Chapter 4 Telomere Strand-Specific Length Analysis by Fluorescent In Situ Hybridization (Q-CO-FISH)
  6. Altmetric Badge
    Chapter 5 Telomere G-Rich Overhang Length Measurement: DSN Method
  7. Altmetric Badge
    Chapter 6 Telomere G-Overhang Length Measurement Method 2: G-Tail Telomere HPA
  8. Altmetric Badge
    Chapter 7 Telomere Terminal G/C Strand Synthesis: Measuring Telomerase Action and C-Rich Fill-In
  9. Altmetric Badge
    Chapter 8 Analysis of Yeast Telomerase by Primer Extension Assays
  10. Altmetric Badge
    Chapter 9 Assessing Telomerase Activities in Mammalian Cells Using the Quantitative PCR-Based Telomeric Repeat Amplification Protocol (qTRAP)
  11. Altmetric Badge
    Chapter 10 Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™)
  12. Altmetric Badge
    Chapter 11 Visualization of Human Telomerase Localization by Fluorescence Microscopy Techniques
  13. Altmetric Badge
    Chapter 12 Cytogenetic Analysis of Telomere Dysfunction
  14. Altmetric Badge
    Chapter 13 Probing the Telomere Damage Response
  15. Altmetric Badge
    Chapter 14 Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins
  16. Altmetric Badge
    Chapter 15 Using Protein-Fragment Complementation Assays (PCA) and Peptide Arrays to Study Telomeric Protein-Protein Interactions
  17. Altmetric Badge
    Chapter 16 In Vitro Preparation and Crystallization of Vertebrate Telomerase Subunits
  18. Altmetric Badge
    Chapter 17 Human Telomeric G-Quadruplex Structures and G-Quadruplex-Interactive Compounds
  19. Altmetric Badge
    Chapter 18 Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization
  20. Altmetric Badge
    Chapter 19 Analysis of Telomere Proteins by Chromatin Immunoprecipitation (ChIP)
Attention for Chapter 14: Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins
Chapter number 14
Book title
Telomeres and Telomerase
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6892-3_14
Pubmed ID
Book ISBNs
978-1-4939-6891-6, 978-1-4939-6892-3
Authors

Rong Tan, Li Lan

Editors

Zhou Songyang

Abstract

Chronic oxidative stress is the major endogenous metabolic stress and contributes directly to telomere shortening and senescence. Understanding the dysfunction of telomeres under oxidative stress will greatly facilitate healthy aging and advance the treatment of aging-related diseases. Here, we describe the KR-TEL (KillerRed induced DNA damage at telomeres) system that induces site-specific oxidative damage at telomeres. We have developed the KR-TEL system by fusing killerred with the shelterin component TRF1 (KR-TRF1) or other shelterin proteins. Killerred (KR), an engineered red fluorescent chromophore, is capable of generating site-specific superoxide upon green light activation (550-580 nm). When KR-TRF1 expressing cells are exposed to green or laser light at defined wavelength to activate KR, localized oxidative DNA damage will be induced at telomeres. KR-induced oxidative DNA damage shows a high degree of resemblance to the complex spectrum of DNA damage induced by radiation in terms of the ratios of oxidized bases and DNA strand breaks. Unlike current oxidation-inducing methods (e.g., IR, chemical, and toxicants), which create damage throughout the genome, KR produces spatially limited oxidative DNA damage only in its immediate proximity. This property of KR allows us to engineer oxidative damage specifically at the telomere in a light dose-dependent manner. Using the KR-TEL system to determine the DNA damage response and repair mechanisms at telomeres has several advantages, which make it an ideal system to investigate the mechanism of how telomere integrity is maintained and how this mechanism plays a role in cancer biology.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 33%
Student > Bachelor 2 22%
Student > Doctoral Student 1 11%
Student > Master 1 11%
Student > Ph. D. Student 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 56%
Medicine and Dentistry 2 22%
Nursing and Health Professions 1 11%
Unknown 1 11%