↓ Skip to main content

Telomeres and Telomerase

Overview of attention for book
Cover of 'Telomeres and Telomerase'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Telomeres and Telomerase
  3. Altmetric Badge
    Chapter 2 Analysis of Average Telomere Length in Human Telomeric Protein Knockout Cells Generated by CRISPR/Cas9
  4. Altmetric Badge
    Chapter 3 Telomere Length Analysis by Quantitative Fluorescent in Situ Hybridization (Q-FISH)
  5. Altmetric Badge
    Chapter 4 Telomere Strand-Specific Length Analysis by Fluorescent In Situ Hybridization (Q-CO-FISH)
  6. Altmetric Badge
    Chapter 5 Telomere G-Rich Overhang Length Measurement: DSN Method
  7. Altmetric Badge
    Chapter 6 Telomere G-Overhang Length Measurement Method 2: G-Tail Telomere HPA
  8. Altmetric Badge
    Chapter 7 Telomere Terminal G/C Strand Synthesis: Measuring Telomerase Action and C-Rich Fill-In
  9. Altmetric Badge
    Chapter 8 Analysis of Yeast Telomerase by Primer Extension Assays
  10. Altmetric Badge
    Chapter 9 Assessing Telomerase Activities in Mammalian Cells Using the Quantitative PCR-Based Telomeric Repeat Amplification Protocol (qTRAP)
  11. Altmetric Badge
    Chapter 10 Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™)
  12. Altmetric Badge
    Chapter 11 Visualization of Human Telomerase Localization by Fluorescence Microscopy Techniques
  13. Altmetric Badge
    Chapter 12 Cytogenetic Analysis of Telomere Dysfunction
  14. Altmetric Badge
    Chapter 13 Probing the Telomere Damage Response
  15. Altmetric Badge
    Chapter 14 Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins
  16. Altmetric Badge
    Chapter 15 Using Protein-Fragment Complementation Assays (PCA) and Peptide Arrays to Study Telomeric Protein-Protein Interactions
  17. Altmetric Badge
    Chapter 16 In Vitro Preparation and Crystallization of Vertebrate Telomerase Subunits
  18. Altmetric Badge
    Chapter 17 Human Telomeric G-Quadruplex Structures and G-Quadruplex-Interactive Compounds
  19. Altmetric Badge
    Chapter 18 Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization
  20. Altmetric Badge
    Chapter 19 Analysis of Telomere Proteins by Chromatin Immunoprecipitation (ChIP)
Attention for Chapter 10: Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™)
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™)
Chapter number 10
Book title
Telomeres and Telomerase
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6892-3_10
Pubmed ID
Book ISBNs
978-1-4939-6891-6, 978-1-4939-6892-3
Authors

Miles J. McKenna, Erin Robinson, Edwin H. Goodwin, Michael N. Cornforth, Susan M. Bailey

Editors

Zhou Songyang

Abstract

The cytogenomics-based methodology of Directional Genomic Hybridization (dGH™) emerged from the concept of strand-specific hybridization, first made possible by Chromosome Orientation FISH (CO-FISH), the utility of which was demonstrated in a variety of early applications, often involving telomeres. Similar to standard whole chromosome painting (FISH), dGH™ is capable of identifying inter-chromosomal rearrangements (translocations between chromosomes), but its distinctive strength stems from its ability to detect intra-chromosomal rearrangements (inversions within chromosomes), and to do so at higher resolution than previously possible. dGH™ brings together the strand specificity and directionality of CO-FISH with sophisticated bioinformatics-based oligonucleotide probe design to unique sequences. dGH™ serves not only as a powerful discovery tool-capable of interrogating the entire genome at the megabase level-it can also be used for high-resolution targeted detection of known inversions, a valuable attribute in both research and clinical settings. Detection of chromosomal inversions, particularly small ones, poses a formidable challenge for more traditional cytogenetic approaches, especially when they occur near the ends or telomeric regions. Here, we describe Telo-dGH™, a strand-specific scheme that utilizes dGH™ in combination with telomere CO-FISH to differentiate between terminal exchange events, specifically terminal inversions, and an altogether different form of genetic recombination that often occurs near the telomere, namely sister chromatid exchange (SCE).

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 40%
Student > Postgraduate 1 20%
Student > Master 1 20%
Unknown 1 20%
Readers by discipline Count As %
Computer Science 2 40%
Agricultural and Biological Sciences 1 20%
Medicine and Dentistry 1 20%
Unknown 1 20%