↓ Skip to main content

Optical Tweezers

Overview of attention for book
Cover of 'Optical Tweezers'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Optical Tweezers
  3. Altmetric Badge
    Chapter 2 Exact Theory of Optical Tweezers and Its Application to Absolute Calibration
  4. Altmetric Badge
    Chapter 3 Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes
  5. Altmetric Badge
    Chapter 4 A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization
  6. Altmetric Badge
    Chapter 5 Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System
  7. Altmetric Badge
    Chapter 6 Custom-Made Microspheres for Optical Tweezers
  8. Altmetric Badge
    Chapter 7 Optical Torque Wrench Design and Calibration
  9. Altmetric Badge
    Chapter 8 High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection
  10. Altmetric Badge
    Chapter 9 Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments
  11. Altmetric Badge
    Chapter 10 Probing DNA–DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics
  12. Altmetric Badge
    Chapter 11 Probing Single Helicase Dynamics on Long Nucleic Acids Through Fluorescence-Force Measurement
  13. Altmetric Badge
    Chapter 12 Mechanically Watching the ClpXP Proteolytic Machinery
  14. Altmetric Badge
    Chapter 13 Deciphering the Molecular Mechanism of the Bacteriophage φ 29 DNA Packaging Motor
  15. Altmetric Badge
    Chapter 14 Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers
  16. Altmetric Badge
    Chapter 15 Observing Single RNA Polymerase Molecules Down to Base-Pair Resolution
  17. Altmetric Badge
    Chapter 16 Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends
  18. Altmetric Badge
    Chapter 17 Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips
  19. Altmetric Badge
    Chapter 18 Measurement of Force-Dependent Release Rates of Cytoskeletal Motors
  20. Altmetric Badge
    Chapter 19 Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers
  21. Altmetric Badge
    Chapter 20 Quantifying Force and Viscoelasticity Inside Living Cells Using an Active–Passive Calibrated Optical Trap
  22. Altmetric Badge
    Chapter 21 Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells
Attention for Chapter 17: Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips
Altmetric Badge

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips
Chapter number 17
Book title
Optical Tweezers
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6421-5_17
Pubmed ID
Book ISBNs
978-1-4939-6419-2, 978-1-4939-6421-5
Authors

Yi Deng, Charles L. Asbury, Deng, Yi, Asbury, Charles L.

Abstract

Kinetochores are large multiprotein complexes that drive mitotic chromosome movements by mechanically coupling them to the growing and shortening tips of spindle microtubules. Kinetochores are also regulatory hubs, somehow sensing when they are erroneously attached and, in response, releasing their incorrect attachments and generating diffusible wait signals to delay anaphase until proper attachments can form. The remarkable ability of a kinetochore to sense and respond to its attachment status might stem from attachment- or tension-dependent changes in the structural arrangement of its core subcomplexes. However, direct tests of the relationship between attachment, tension, and core kinetochore structure have not previously been possible because of the difficulties of applying well-controlled forces and determining unambiguously the attachment status of individual kinetochores in vivo. The recent purification of native yeast kinetochores has enabled in vitro optical trapping-based assays of kinetochore tip-coupling and, in separate experiments, fluorescence imaging of single kinetochore particles. Here we introduce a dual instrument, combining optical trapping with multicolor total internal reflection fluorescence (TIRF) imaging, to allow kinetochore structure to be monitored directly with nanometer precision while mechanical tension is simultaneously applied. Our instrument incorporates differential interference contrast (DIC) imaging as well, to minimize the photo-bleaching of fluorescent tags during preparative bead and microtubule manipulations. A simple modification also allows the trapping laser to be easily converted into a real-time focus detection and correction system. Using this combined instrument, the distance between specific subcomplexes within a single kinetochore particle can be measured with 2-nm precision after 50 s observation time, or with 11-nm precision at 1 s temporal resolution. While our instrument was constructed specifically for studying kinetochores, it should also be useful for studying other filament-binding protein complexes, such as spindle poles, cortical microtubule attachments, focal adhesions, or other motor-cytoskeletal junctions.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 6%
Unknown 16 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 35%
Researcher 3 18%
Professor 1 6%
Student > Doctoral Student 1 6%
Unknown 6 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 24%
Agricultural and Biological Sciences 4 24%
Physics and Astronomy 2 12%
Chemistry 1 6%
Engineering 1 6%
Other 0 0%
Unknown 5 29%