↓ Skip to main content

Optical Tweezers

Overview of attention for book
Cover of 'Optical Tweezers'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Optical Tweezers
  3. Altmetric Badge
    Chapter 2 Exact Theory of Optical Tweezers and Its Application to Absolute Calibration
  4. Altmetric Badge
    Chapter 3 Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes
  5. Altmetric Badge
    Chapter 4 A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization
  6. Altmetric Badge
    Chapter 5 Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System
  7. Altmetric Badge
    Chapter 6 Custom-Made Microspheres for Optical Tweezers
  8. Altmetric Badge
    Chapter 7 Optical Torque Wrench Design and Calibration
  9. Altmetric Badge
    Chapter 8 High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection
  10. Altmetric Badge
    Chapter 9 Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments
  11. Altmetric Badge
    Chapter 10 Probing DNA–DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics
  12. Altmetric Badge
    Chapter 11 Probing Single Helicase Dynamics on Long Nucleic Acids Through Fluorescence-Force Measurement
  13. Altmetric Badge
    Chapter 12 Mechanically Watching the ClpXP Proteolytic Machinery
  14. Altmetric Badge
    Chapter 13 Deciphering the Molecular Mechanism of the Bacteriophage φ 29 DNA Packaging Motor
  15. Altmetric Badge
    Chapter 14 Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers
  16. Altmetric Badge
    Chapter 15 Observing Single RNA Polymerase Molecules Down to Base-Pair Resolution
  17. Altmetric Badge
    Chapter 16 Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends
  18. Altmetric Badge
    Chapter 17 Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips
  19. Altmetric Badge
    Chapter 18 Measurement of Force-Dependent Release Rates of Cytoskeletal Motors
  20. Altmetric Badge
    Chapter 19 Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers
  21. Altmetric Badge
    Chapter 20 Quantifying Force and Viscoelasticity Inside Living Cells Using an Active–Passive Calibrated Optical Trap
  22. Altmetric Badge
    Chapter 21 Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells
Attention for Chapter 7: Optical Torque Wrench Design and Calibration
Altmetric Badge

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Optical Torque Wrench Design and Calibration
Chapter number 7
Book title
Optical Tweezers
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6421-5_7
Pubmed ID
Book ISBNs
978-1-4939-6419-2, 978-1-4939-6421-5
Authors

Zhanna Santybayeva, Francesco Pedaci, Santybayeva, Zhanna, Pedaci, Francesco

Abstract

Expanding the capabilities of optical traps with angular control of the trapped particle has numerous potential applications in all fields where standard linear optical tweezers are employed. Here we describe in detail the construction, alignment, and calibration of the Optical Torque Wrench, a mode of function that can be added to linear optical tweezers to simultaneously apply and measure both force and torque on birefringent microscopic cylindrical particles. The interaction between the linear polarization of the laser and the birefringent cylinder creates an angular trap for the particle orientation, described by a periodic potential. As a consequence of the experimental control of the tilt of the periodic potential, the dynamical excitability of the system can be observed. Angular optical tweezers remain less widespread than their linear counterpart. We hope this technical guide can foster their development and new applications.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 33%
Researcher 2 17%
Professor 1 8%
Student > Master 1 8%
Student > Postgraduate 1 8%
Other 0 0%
Unknown 3 25%
Readers by discipline Count As %
Physics and Astronomy 4 33%
Agricultural and Biological Sciences 3 25%
Biochemistry, Genetics and Molecular Biology 1 8%
Engineering 1 8%
Unknown 3 25%