↓ Skip to main content

Data Mining Techniques for the Life Sciences

Overview of attention for book
Cover of 'Data Mining Techniques for the Life Sciences'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Data Mining Techniques for the Life Sciences
  3. Altmetric Badge
    Chapter 2 Protein Structure Databases.
  4. Altmetric Badge
    Chapter 3 The MIntAct Project and Molecular Interaction Databases.
  5. Altmetric Badge
    Chapter 4 Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.
  6. Altmetric Badge
    Chapter 5 Classification and Exploration of 3D Protein Domain Interactions Using Kbdock.
  7. Altmetric Badge
    Chapter 6 Data Mining of Macromolecular Structures.
  8. Altmetric Badge
    Chapter 7 Criteria to Extract High-Quality Protein Data Bank Subsets for Structure Users.
  9. Altmetric Badge
    Chapter 8 Homology-Based Annotation of Large Protein Datasets.
  10. Altmetric Badge
    Chapter 9 Data Mining Techniques for the Life Sciences
  11. Altmetric Badge
    Chapter 10 Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins.
  12. Altmetric Badge
    Chapter 11 Systematic Exploration of an Efficient Amino Acid Substitution Matrix: MIQS.
  13. Altmetric Badge
    Chapter 12 Promises and Pitfalls of High-Throughput Biological Assays.
  14. Altmetric Badge
    Chapter 13 Data Mining Techniques for the Life Sciences
  15. Altmetric Badge
    Chapter 14 Predicting Conformational Disorder.
  16. Altmetric Badge
    Chapter 15 Classification of Protein Kinases Influenced by Conservation of Substrate Binding Residues.
  17. Altmetric Badge
    Chapter 16 Spectral-Statistical Approach for Revealing Latent Regular Structures in DNA Sequence.
  18. Altmetric Badge
    Chapter 17 Protein Crystallizability.
  19. Altmetric Badge
    Chapter 18 Data Mining Techniques for the Life Sciences
  20. Altmetric Badge
    Chapter 19 Data Mining Techniques for the Life Sciences
  21. Altmetric Badge
    Chapter 20 Functional Analysis of Metabolomics Data.
  22. Altmetric Badge
    Chapter 21 Data Mining Techniques for the Life Sciences
  23. Altmetric Badge
    Chapter 22 A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants.
  24. Altmetric Badge
    Chapter 23 Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.
  25. Altmetric Badge
    Chapter 24 Protein Residue Contacts and Prediction Methods.
  26. Altmetric Badge
    Chapter 25 The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment.
  27. Altmetric Badge
    Chapter 26 Data Mining Techniques for the Life Sciences
  28. Altmetric Badge
    Chapter 27 Data Mining Techniques for the Life Sciences
Attention for Chapter 24: Protein Residue Contacts and Prediction Methods.
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
76 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Protein Residue Contacts and Prediction Methods.
Chapter number 24
Book title
Data Mining Techniques for the Life Sciences
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3572-7_24
Pubmed ID
Book ISBNs
978-1-4939-3570-3, 978-1-4939-3572-7
Authors

Badri Adhikari, Jianlin Cheng

Editors

Oliviero Carugo, Frank Eisenhaber

Abstract

In the field of computational structural proteomics, contact predictions have shown new prospects of solving the longstanding problem of ab initio protein structure prediction. In the last few years, application of deep learning algorithms and availability of large protein sequence databases, combined with improvement in methods that derive contacts from multiple sequence alignments, have shown a huge increase in the precision of contact prediction. In addition, these predicted contacts have also been used to build three-dimensional models from scratch.In this chapter, we briefly discuss many elements of protein residue-residue contacts and the methods available for prediction, focusing on a state-of-the-art contact prediction tool, DNcon. Illustrating with a case study, we describe how DNcon can be used to make ab initio contact predictions for a given protein sequence and discuss how the predicted contacts may be analyzed and evaluated.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 1%
Unknown 75 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 30%
Researcher 10 13%
Student > Master 9 12%
Student > Bachelor 7 9%
Student > Doctoral Student 4 5%
Other 8 11%
Unknown 15 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 33%
Computer Science 14 18%
Agricultural and Biological Sciences 7 9%
Chemistry 4 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 5 7%
Unknown 19 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2020.
All research outputs
#15,812,571
of 19,695,594 outputs
Outputs from Methods in molecular biology
#5,838
of 11,052 outputs
Outputs of similar age
#198,143
of 277,173 outputs
Outputs of similar age from Methods in molecular biology
#4
of 4 outputs
Altmetric has tracked 19,695,594 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,052 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,173 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.