↓ Skip to main content

Data Mining Techniques for the Life Sciences

Overview of attention for book
Cover of 'Data Mining Techniques for the Life Sciences'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Data Mining Techniques for the Life Sciences
  3. Altmetric Badge
    Chapter 2 Protein Structure Databases.
  4. Altmetric Badge
    Chapter 3 The MIntAct Project and Molecular Interaction Databases.
  5. Altmetric Badge
    Chapter 4 Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.
  6. Altmetric Badge
    Chapter 5 Classification and Exploration of 3D Protein Domain Interactions Using Kbdock.
  7. Altmetric Badge
    Chapter 6 Data Mining of Macromolecular Structures.
  8. Altmetric Badge
    Chapter 7 Criteria to Extract High-Quality Protein Data Bank Subsets for Structure Users.
  9. Altmetric Badge
    Chapter 8 Homology-Based Annotation of Large Protein Datasets.
  10. Altmetric Badge
    Chapter 9 Data Mining Techniques for the Life Sciences
  11. Altmetric Badge
    Chapter 10 Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins.
  12. Altmetric Badge
    Chapter 11 Systematic Exploration of an Efficient Amino Acid Substitution Matrix: MIQS.
  13. Altmetric Badge
    Chapter 12 Promises and Pitfalls of High-Throughput Biological Assays.
  14. Altmetric Badge
    Chapter 13 Data Mining Techniques for the Life Sciences
  15. Altmetric Badge
    Chapter 14 Predicting Conformational Disorder.
  16. Altmetric Badge
    Chapter 15 Classification of Protein Kinases Influenced by Conservation of Substrate Binding Residues.
  17. Altmetric Badge
    Chapter 16 Spectral-Statistical Approach for Revealing Latent Regular Structures in DNA Sequence.
  18. Altmetric Badge
    Chapter 17 Protein Crystallizability.
  19. Altmetric Badge
    Chapter 18 Data Mining Techniques for the Life Sciences
  20. Altmetric Badge
    Chapter 19 Data Mining Techniques for the Life Sciences
  21. Altmetric Badge
    Chapter 20 Functional Analysis of Metabolomics Data.
  22. Altmetric Badge
    Chapter 21 Data Mining Techniques for the Life Sciences
  23. Altmetric Badge
    Chapter 22 A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants.
  24. Altmetric Badge
    Chapter 23 Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.
  25. Altmetric Badge
    Chapter 24 Protein Residue Contacts and Prediction Methods.
  26. Altmetric Badge
    Chapter 25 The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment.
  27. Altmetric Badge
    Chapter 26 Data Mining Techniques for the Life Sciences
  28. Altmetric Badge
    Chapter 27 Data Mining Techniques for the Life Sciences
Attention for Chapter 9: Data Mining Techniques for the Life Sciences
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Data Mining Techniques for the Life Sciences
Chapter number 9
Book title
Data Mining Techniques for the Life Sciences
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3572-7_9
Pubmed ID
Book ISBNs
978-1-4939-3570-3, 978-1-4939-3572-7
Authors

Patthy, László, László Patthy

Editors

Oliviero Carugo, Frank Eisenhaber

Abstract

Correct prediction of the structure of protein-coding genes of higher eukaryotes is a difficult task therefore public sequence databases incorporating predicted sequences are increasingly contaminated with erroneous sequences. The high rate of misprediction has serious consequences since it significantly affects the conclusions that may be drawn from genome-scale sequence analyses.Here we describe the MisPred and FixPred approaches that may help the identification and correction of erroneous sequences. The rationale of these approaches is that a protein sequence is likely to be erroneous if some of its features conflict with our current knowledge about proteins.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 38%
Student > Master 1 13%
Student > Doctoral Student 1 13%
Other 1 13%
Student > Ph. D. Student 1 13%
Other 1 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 50%
Medicine and Dentistry 2 25%
Biochemistry, Genetics and Molecular Biology 1 13%
Engineering 1 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2016.
All research outputs
#14,608,062
of 21,735,696 outputs
Outputs from Methods in molecular biology
#4,990
of 12,487 outputs
Outputs of similar age
#164,969
of 280,000 outputs
Outputs of similar age from Methods in molecular biology
#7
of 19 outputs
Altmetric has tracked 21,735,696 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,487 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,000 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.