↓ Skip to main content

Biophysics of Infection

Overview of attention for book
Cover of 'Biophysics of Infection'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Biophysics of Infection
  3. Altmetric Badge
    Chapter 2 Biophysics of Infection
  4. Altmetric Badge
    Chapter 3 Biophysics of Infection
  5. Altmetric Badge
    Chapter 4 Biophysics of Infection
  6. Altmetric Badge
    Chapter 5 Evolution of Drug Resistance in Bacteria
  7. Altmetric Badge
    Chapter 6 Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria.
  8. Altmetric Badge
    Chapter 7 Biophysics of Infection
  9. Altmetric Badge
    Chapter 8 Biophysics of Infection
  10. Altmetric Badge
    Chapter 9 Biophysics of Infection
  11. Altmetric Badge
    Chapter 10 Bacterial Surfaces: Front Lines in Host-Pathogen Interaction.
  12. Altmetric Badge
    Chapter 11 Biophysical Approaches to Bacterial Gene Regulation by Riboswitches
  13. Altmetric Badge
    Chapter 12 Biophysics of Infection
  14. Altmetric Badge
    Chapter 13 Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens.
  15. Altmetric Badge
    Chapter 14 Biophysics of Infection
  16. Altmetric Badge
    Chapter 15 Biophysics of Infection
  17. Altmetric Badge
    Chapter 16 Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes
  18. Altmetric Badge
    Chapter 17 Mechanisms of Salmonella Typhi Host Restriction.
  19. Altmetric Badge
    Chapter 18 Biophysics of Infection
  20. Altmetric Badge
    Chapter 19 Force Spectroscopy in Studying Infection.
  21. Altmetric Badge
    Chapter 20 Biophysics of Infection
  22. Altmetric Badge
    Chapter 21 Biophysics of Infection
  23. Altmetric Badge
    Chapter 22 Erratum to: The Type I Restriction Enzymes as Barriers to Horizontal Gene Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complexes 133/ST771 and 398
Attention for Chapter 5: Evolution of Drug Resistance in Bacteria
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
106 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Evolution of Drug Resistance in Bacteria
Chapter number 5
Book title
Biophysics of Infection
Published in
Advances in experimental medicine and biology, May 2016
DOI 10.1007/978-3-319-32189-9_5
Pubmed ID
Book ISBNs
978-3-31-932187-5, 978-3-31-932189-9
Authors

Waclaw, B., B. Waclaw

Editors

Mark C. Leake

Abstract

Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 106 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 <1%
Unknown 105 99%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 16 15%
Student > Master 13 12%
Researcher 12 11%
Student > Ph. D. Student 12 11%
Student > Doctoral Student 4 4%
Other 8 8%
Unknown 41 39%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 18%
Medicine and Dentistry 10 9%
Agricultural and Biological Sciences 9 8%
Engineering 5 5%
Veterinary Science and Veterinary Medicine 4 4%
Other 16 15%
Unknown 43 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2019.
All research outputs
#14,851,946
of 22,873,031 outputs
Outputs from Advances in experimental medicine and biology
#2,269
of 4,951 outputs
Outputs of similar age
#198,382
of 334,143 outputs
Outputs of similar age from Advances in experimental medicine and biology
#48
of 134 outputs
Altmetric has tracked 22,873,031 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,951 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,143 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 134 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.