↓ Skip to main content

Biophysics of Infection

Overview of attention for book
Cover of 'Biophysics of Infection'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Biophysics of Infection
  3. Altmetric Badge
    Chapter 2 Biophysics of Infection
  4. Altmetric Badge
    Chapter 3 Biophysics of Infection
  5. Altmetric Badge
    Chapter 4 Biophysics of Infection
  6. Altmetric Badge
    Chapter 5 Evolution of Drug Resistance in Bacteria
  7. Altmetric Badge
    Chapter 6 Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria.
  8. Altmetric Badge
    Chapter 7 Biophysics of Infection
  9. Altmetric Badge
    Chapter 8 Biophysics of Infection
  10. Altmetric Badge
    Chapter 9 Biophysics of Infection
  11. Altmetric Badge
    Chapter 10 Bacterial Surfaces: Front Lines in Host-Pathogen Interaction.
  12. Altmetric Badge
    Chapter 11 Biophysical Approaches to Bacterial Gene Regulation by Riboswitches
  13. Altmetric Badge
    Chapter 12 Biophysics of Infection
  14. Altmetric Badge
    Chapter 13 Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens.
  15. Altmetric Badge
    Chapter 14 Biophysics of Infection
  16. Altmetric Badge
    Chapter 15 Biophysics of Infection
  17. Altmetric Badge
    Chapter 16 Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes
  18. Altmetric Badge
    Chapter 17 Mechanisms of Salmonella Typhi Host Restriction.
  19. Altmetric Badge
    Chapter 18 Biophysics of Infection
  20. Altmetric Badge
    Chapter 19 Force Spectroscopy in Studying Infection.
  21. Altmetric Badge
    Chapter 20 Biophysics of Infection
  22. Altmetric Badge
    Chapter 21 Biophysics of Infection
  23. Altmetric Badge
    Chapter 22 Erratum to: The Type I Restriction Enzymes as Barriers to Horizontal Gene Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complexes 133/ST771 and 398
Attention for Chapter 21: Biophysics of Infection
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Biophysics of Infection
Chapter number 21
Book title
Biophysics of Infection
Published in
Advances in experimental medicine and biology, May 2016
DOI 10.1007/978-3-319-32189-9_21
Pubmed ID
Book ISBNs
978-3-31-932187-5, 978-3-31-932189-9
Authors

Penn, Alexandra S, Alexandra S. Penn

Editors

Mark C. Leake

Abstract

Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 28%
Researcher 4 22%
Other 2 11%
Student > Master 2 11%
Lecturer 1 6%
Other 0 0%
Unknown 4 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 17%
Medicine and Dentistry 3 17%
Immunology and Microbiology 2 11%
Engineering 2 11%
Psychology 1 6%
Other 3 17%
Unknown 4 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2016.
All research outputs
#14,603,674
of 24,503,376 outputs
Outputs from Advances in experimental medicine and biology
#2,032
of 5,204 outputs
Outputs of similar age
#180,993
of 340,595 outputs
Outputs of similar age from Advances in experimental medicine and biology
#33
of 133 outputs
Altmetric has tracked 24,503,376 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,204 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,595 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.