↓ Skip to main content

Biophysics of Infection

Overview of attention for book
Cover of 'Biophysics of Infection'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Biophysics of Infection
  3. Altmetric Badge
    Chapter 2 Biophysics of Infection
  4. Altmetric Badge
    Chapter 3 Biophysics of Infection
  5. Altmetric Badge
    Chapter 4 Biophysics of Infection
  6. Altmetric Badge
    Chapter 5 Evolution of Drug Resistance in Bacteria
  7. Altmetric Badge
    Chapter 6 Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria.
  8. Altmetric Badge
    Chapter 7 Biophysics of Infection
  9. Altmetric Badge
    Chapter 8 Biophysics of Infection
  10. Altmetric Badge
    Chapter 9 Biophysics of Infection
  11. Altmetric Badge
    Chapter 10 Bacterial Surfaces: Front Lines in Host-Pathogen Interaction.
  12. Altmetric Badge
    Chapter 11 Biophysical Approaches to Bacterial Gene Regulation by Riboswitches
  13. Altmetric Badge
    Chapter 12 Biophysics of Infection
  14. Altmetric Badge
    Chapter 13 Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens.
  15. Altmetric Badge
    Chapter 14 Biophysics of Infection
  16. Altmetric Badge
    Chapter 15 Biophysics of Infection
  17. Altmetric Badge
    Chapter 16 Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes
  18. Altmetric Badge
    Chapter 17 Mechanisms of Salmonella Typhi Host Restriction.
  19. Altmetric Badge
    Chapter 18 Biophysics of Infection
  20. Altmetric Badge
    Chapter 19 Force Spectroscopy in Studying Infection.
  21. Altmetric Badge
    Chapter 20 Biophysics of Infection
  22. Altmetric Badge
    Chapter 21 Biophysics of Infection
  23. Altmetric Badge
    Chapter 22 Erratum to: The Type I Restriction Enzymes as Barriers to Horizontal Gene Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complexes 133/ST771 and 398
Attention for Chapter 17: Mechanisms of Salmonella Typhi Host Restriction.
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Mechanisms of Salmonella Typhi Host Restriction.
Chapter number 17
Book title
Biophysics of Infection
Published in
Advances in experimental medicine and biology, May 2016
DOI 10.1007/978-3-319-32189-9_17
Pubmed ID
Book ISBNs
978-3-31-932187-5, 978-3-31-932189-9
Authors

Stefania Spanò

Editors

Mark C. Leake

Abstract

Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening bacterial infection that is very common in the developing world. Recent spread of antimicrobial resistant isolates of S. Typhi makes typhoid fever, a global public health risk. Despite being a common disease, still very little is known about the molecular mechanisms underlying typhoid fever and S. Typhi pathogenesis. In contrast to other Salmonellae, S. Typhi can only infect humans. The molecular bases of this human restriction are mostly unknown. Recent studies identified a novel pathway that contributes to S. Typhi human restriction and is required for killing S. Typhi in macrophages of nonsusceptible species. The small Rab GTPase Rab32 and its guanine nucleotide exchange factor BLOC-3 are the critical components of this pathway. These proteins were already well known as important regulators of intracellular membrane transport. In particular, they are central for the transport of enzymes that synthetize melanin in pigment cells. The recent findings that Rab32 and BLOC-3 are required for S. Typhi host restriction point out to a novel mechanism restricting the growth of bacterial pathogen, dependent on the transport of still unknown molecule(s) to the S. Typhi vacuole. The identification of this novel antimicrobial pathway constitutes a critical starting point to study molecular mechanisms killing bacterial pathogens and possibly identify novel antimicrobial molecules.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 2%
Unknown 53 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 13%
Researcher 6 11%
Student > Master 6 11%
Student > Doctoral Student 5 9%
Student > Bachelor 5 9%
Other 11 20%
Unknown 14 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 19%
Immunology and Microbiology 9 17%
Medicine and Dentistry 7 13%
Agricultural and Biological Sciences 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 7 13%
Unknown 16 30%