↓ Skip to main content

Lipases and Phospholipases

Overview of attention for book
Cover of 'Lipases and Phospholipases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Lipases: An Overview
  3. Altmetric Badge
    Chapter 2 Carbohydrate Esterases: An Overview
  4. Altmetric Badge
    Chapter 3 Phospholipases: An Overview
  5. Altmetric Badge
    Chapter 4 Functional-Based Screening Methods for Detecting Esterase and Lipase Activity Against Multiple Substrates
  6. Altmetric Badge
    Chapter 5 A Continuous and Sensitive Spectrophotometric Assay for Lipase and Phospholipase A Activities Using α-Eleostearic Acid-Containing Substrates
  7. Altmetric Badge
    Chapter 6 Direct and Continuous Measurement of Phospholipase D Activities Using the Chelation-Enhanced Fluorescence Property of 8-Hydroxyquinoline
  8. Altmetric Badge
    Chapter 7 Lipase and Phospholipase Activity Methods for Marine Organisms
  9. Altmetric Badge
    Chapter 8 Functional Expression of Plant Lipases: The Case of CpLip1 from Carica papaya
  10. Altmetric Badge
    Chapter 9 Heterologous Expression and Functional Characterization of Sparidae Fish Digestive Phospholipase A2
  11. Altmetric Badge
    Chapter 10 Expression and Purification of Recombinant Vigna unguiculata Phospholipase D in Pichia pastoris for Structural Studies
  12. Altmetric Badge
    Chapter 11 Recent Advances in Pichia pastoris as Host for Heterologous Expression System for Lipases: A Review
  13. Altmetric Badge
    Chapter 12 Solid-State Fermentation as an Economic Production Method of Lipases
  14. Altmetric Badge
    Chapter 13 Synthetic Biology to Improve the Production of Lipases and Esterases (Review)
  15. Altmetric Badge
    Chapter 14 Rational Design Strategy as a Novel Immobilization Methodology Applied to Lipases and Phospholipases
  16. Altmetric Badge
    Chapter 15 Lipase-Catalyzed Synthesis of Fatty Acid Esters of Trisaccharides
  17. Altmetric Badge
    Chapter 16 Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function
  18. Altmetric Badge
    Chapter 17 Lipase-Catalyzed Synthesis of Structured Lipids at Laboratory Scale
  19. Altmetric Badge
    Chapter 18 Lipase-Catalyzed Acetylation and Esterification of Bile Acids
  20. Altmetric Badge
    Chapter 19 Lipases in Green Chemistry: Deep Eutectic Solvents (DES) as New Green Solvents
  21. Altmetric Badge
    Chapter 20 Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases
  22. Altmetric Badge
    Chapter 21 Lipases as Biocatalyst for Biodiesel Production
  23. Altmetric Badge
    Chapter 22 Lipase, Phospholipase, and Esterase Biosensors (Review)
Attention for Chapter 16: Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function
Altmetric Badge

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function
Chapter number 16
Book title
Lipases and Phospholipases
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8672-9_16
Pubmed ID
Book ISBNs
978-1-4939-8671-2, 978-1-4939-8672-9
Authors

Julian Gomez-Cambronero, Ramya Ganesan, Gomez-Cambronero, Julian, Ganesan, Ramya

Abstract

Phospholipase D (PLD), is a protein that breaks down phospholipids, maintaining structural integrity and remodeling of cellular or intracellular membranes, as well as mediating protein trafficking and cytoskeletal dynamics during cell motility. One of the reaction products of PLD action is phosphatidic acid (PA). PA is a mitogen involved in a large variety of physiological cellular functions, such as cell growth, cell cycle progression, and cell motility. We have chosen as cell models the leukocyte polymorphonuclear neutrophil and the macrophage as examples of cell motility. We provide a three-part method for targeting PLD genetically and pharmacologically to study its role in cell migration. In the first part, we begin with genetically deficient mice PLD1-KO and PLD2-KO. We describe bone marrow neutrophil (BMN) isolation; BMN is labeled fluorescently and can be used for studying tissue-damaging neutrophilia in ischemia-reperfusion injury (IRI). In the second part, we begin also with PLD1-KO and PLD2-KO and prepare bone marrow-derived macrophages (BMDM), first from monocytes and then inducing macrophage differentiation in culture with continuous incubation of cytokines. We use BMDM to find experimentally if PLD woul play a role in cholesterol phagocytosis, which is the first step in atherosclerosis progression. In the third part, we study PLD function in BMN and BMDM with PLD enzyme pharmacological inhibitors instead of genetically deficient mice, to ascertain the particular contributions of isoforms PLD1 and PLD2 on leukocyte function. By using the three-step thorough approach, we could understand the molecular underpinning of PLD in the pathological conditions indicated above, IRI-neutrophilia and atherosclerosis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 50%
Student > Bachelor 1 25%
Student > Master 1 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 50%
Neuroscience 1 25%
Medicine and Dentistry 1 25%