↓ Skip to main content

Whole Genome Amplification

Overview of attention for book
Cover of 'Whole Genome Amplification'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Principles of Whole-Genome Amplification
  3. Altmetric Badge
    Chapter 2 Bias in Whole Genome Amplification: Causes and Considerations.
  4. Altmetric Badge
    Chapter 3 The Single-Cell Lab or How to Perform Single-Cell Molecular Analysis
  5. Altmetric Badge
    Chapter 4 Sample Preparation Methods Following CellSearch Approach Compatible of Single-Cell Whole-Genome Amplification: An Overview
  6. Altmetric Badge
    Chapter 5 Deterministic Whole-Genome Amplification of Single Cells.
  7. Altmetric Badge
    Chapter 6 Construction of a DNA Library on Microbeads Using Whole Genome Amplification
  8. Altmetric Badge
    Chapter 7 Heat-Induced Fragmentation and Adapter-Assisted Whole Genome Amplification Using GenomePlex ® Single-Cell Whole Genome Amplification Kit (WGA4)
  9. Altmetric Badge
    Chapter 8 Whole Genome Amplification by Isothermal Multiple Strand Displacement Using Phi29 DNA Polymerase.
  10. Altmetric Badge
    Chapter 9 Using Multiplex PCR for Assessing the Quality of Whole Genome Amplified DNA
  11. Altmetric Badge
    Chapter 10 Quality Control of Isothermal Amplified DNA Based on Short Tandem Repeat Analysis
  12. Altmetric Badge
    Chapter 11 Laser Microdissection of FFPE Tissue Areas and Subsequent Whole Genome Amplification by Ampli 1™
  13. Altmetric Badge
    Chapter 12 Whole Genome Amplification from Blood Spot Samples
  14. Altmetric Badge
    Chapter 13 Analysis of Whole Mitogenomes from Ancient Samples
  15. Altmetric Badge
    Chapter 14 Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.
  16. Altmetric Badge
    Chapter 15 Whole Genome Amplification in Genomic Analysis of Single Circulating Tumor Cells.
  17. Altmetric Badge
    Chapter 16 Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization
  18. Altmetric Badge
    Chapter 17 Low-Volume On-Chip Single-Cell Whole Genome Amplification for Multiple Subsequent Analyses.
  19. Altmetric Badge
    Chapter 18 Detection and Characterization of Circulating Tumor Cells by the CellSearch Approach
Attention for Chapter 4: Sample Preparation Methods Following CellSearch Approach Compatible of Single-Cell Whole-Genome Amplification: An Overview
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Sample Preparation Methods Following CellSearch Approach Compatible of Single-Cell Whole-Genome Amplification: An Overview
Chapter number 4
Book title
Whole Genome Amplification
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2990-0_4
Pubmed ID
Book ISBNs
978-1-4939-2989-4, 978-1-4939-2990-0
Authors

Joost F. Swennenhuis, Leon Terstappen, Swennenhuis, Joost F., Terstappen, Leon

Abstract

Single cells are increasingly used to determine the heterogeneity of therapy targets in the genome during the course of a disease. The first challenge using single cells is to isolate these cells from the surrounding cells, especially when the targeted cells are rare. A number of techniques have been developed for this goal, each having specific limitations and possibilities. In this chapter, five of these techniques are discussed in the light of the isolation of circulating tumor cells (CTC) present at extremely low frequency in the blood of patients with metastatic cancer from the perspective of pre-enriched samples by means of CellSearch. The techniques described are micromanipulation, FACS, laser capture microdissection, DEPArray, and microfluidic solutions. All platforms are hampered with a low efficiency and differences in hands-on time and costs are the most important drivers for selection of the optimal platform.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Hungary 1 3%
Germany 1 3%
Unknown 37 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 26%
Student > Master 8 21%
Student > Ph. D. Student 7 18%
Student > Doctoral Student 3 8%
Professor 2 5%
Other 4 10%
Unknown 5 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 31%
Biochemistry, Genetics and Molecular Biology 10 26%
Medicine and Dentistry 4 10%
Unspecified 1 3%
Psychology 1 3%
Other 3 8%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2017.
All research outputs
#7,554,540
of 23,045,021 outputs
Outputs from Methods in molecular biology
#2,342
of 13,194 outputs
Outputs of similar age
#106,474
of 354,279 outputs
Outputs of similar age from Methods in molecular biology
#169
of 998 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,194 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,279 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 998 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.