↓ Skip to main content

Non-Viral Gene Delivery Vectors

Overview of attention for book
Cover of 'Non-Viral Gene Delivery Vectors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Physical Chemical and Biomolecular Methods for the Optimization of Cationic Lipid-Based Lipoplexes In Vitro for the Gene Therapy Applications
  3. Altmetric Badge
    Chapter 2 Non-Viral Gene Delivery Vectors
  4. Altmetric Badge
    Chapter 3 Lipoplexes from Non-viral Cationic Vectors: DOTAP-DOPE Liposomes and Gemini Micelles
  5. Altmetric Badge
    Chapter 4 Anionic/Zwitterionic Lipid-Based Gene Vectors of pDNA
  6. Altmetric Badge
    Chapter 5 Elaboration and Physicochemical Characterization of Niosome-Based Nioplexes for Gene Delivery Purposes
  7. Altmetric Badge
    Chapter 6 Quantitative Intracellular Localization of Cationic Lipid–Nucleic Acid Nanoparticles with Fluorescence Microscopy
  8. Altmetric Badge
    Chapter 7 Targeted Delivery of Peptide-Tagged DNA Lipoplexes to Hepatocellular Carcinoma Cells
  9. Altmetric Badge
    Chapter 8 Lipoplexes Strengthened by Anionic Polymers: Easy Preparation of Highly Effective siRNA Vectors Based on Cationic Lipids and Anionic Polymers
  10. Altmetric Badge
    Chapter 9 Polymer Based Gene Silencing: In Vitro Delivery of SiRNA
  11. Altmetric Badge
    Chapter 10 Polyallylamine Derivatives: Novel NonToxic Transfection Agents
  12. Altmetric Badge
    Chapter 11 Biodegradable Three-Layered Micelles and Injectable Hydrogels
  13. Altmetric Badge
    Chapter 12 Non-Viral Gene Delivery Vectors
  14. Altmetric Badge
    Chapter 13 Non-Viral Gene Delivery Vectors
  15. Altmetric Badge
    Chapter 14 Characterization and Investigation of Redox-Sensitive Liposomes for Gene Delivery
  16. Altmetric Badge
    Chapter 15 From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides
  17. Altmetric Badge
    Chapter 16 Gene Delivery Method Using Photo-Responsive Poly(β-Amino Ester) as Vectors
  18. Altmetric Badge
    Chapter 17 Thermo-Responsive Polyplex Micelles with PEG Shells and PNIPAM Layer to Protect DNA Cores for Systemic Gene Therapy
  19. Altmetric Badge
    Chapter 18 Application of Polyethylenimine-Grafted Silicon Nanowire Arrays for Gene Transfection
Attention for Chapter 6: Quantitative Intracellular Localization of Cationic Lipid–Nucleic Acid Nanoparticles with Fluorescence Microscopy
Altmetric Badge

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Quantitative Intracellular Localization of Cationic Lipid–Nucleic Acid Nanoparticles with Fluorescence Microscopy
Chapter number 6
Book title
Non-Viral Gene Delivery Vectors
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3718-9_6
Pubmed ID
Book ISBNs
978-1-4939-3716-5, 978-1-4939-3718-9
Authors

Ramsey N. Majzoub, Kai K. Ewert, Cyrus R. Safinya

Abstract

Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic liposome (CL)-NA nanoparticles (NPs). Chemically modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present two distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis with fluorescence microscopy.The first method, spatial localization, describes how to prepare fluorescently labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, describes how to label endocytic organelles via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 30%
Student > Doctoral Student 2 20%
Student > Master 1 10%
Researcher 1 10%
Student > Postgraduate 1 10%
Other 0 0%
Unknown 2 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 30%
Agricultural and Biological Sciences 3 30%
Materials Science 1 10%
Chemistry 1 10%
Unknown 2 20%