↓ Skip to main content

3D Sponge-Matrix Histoculture

Overview of attention for book
Cover of '3D Sponge-Matrix Histoculture'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 In Memoriam: Joseph Leighton, 1921–1999—Father of 3-Dimensional Tissue Culture
  3. Altmetric Badge
    Chapter 2 3D Sponge-Matrix Histoculture: An Overview
  4. Altmetric Badge
    Chapter 3 In Vivo-Like Growth Patterns of Multiple Types of Tumors in Gelfoam® Histoculture
  5. Altmetric Badge
    Chapter 4 Expression and Targeting of Tumor Markers in Gelfoam® Histoculture: Potential Individualized Assays for Immuno-Oncology
  6. Altmetric Badge
    Chapter 5 Development of the Histoculture Drug Response Assay (HDRA)
  7. Altmetric Badge
    Chapter 6 Diagnosis and Pathological Analysis of Patient Cancers by Detection of Proliferating Cells in Gelfoam® Histoculture
  8. Altmetric Badge
    Chapter 7 Clinical Correlation of the Histoculture Drug Response Assay in Gastrointestinal Cancer
  9. Altmetric Badge
    Chapter 8 Prospective Clinical Correlation of the Histoculture Drug Response Assay for Ovarian Cancer
  10. Altmetric Badge
    Chapter 9 Clinical Correlation of the Histoculture Drug Response Assay for Head and Neck Cancer
  11. Altmetric Badge
    Chapter 10 Clinical Usefulness of the Histoculture Drug Response Assay for Breast Cancer
  12. Altmetric Badge
    Chapter 11 Clinical Usefulness of the Histoculture Drug Response Assay for Prostate Cancer and Benign Prostate Hypertrophy (BPH)
  13. Altmetric Badge
    Chapter 12 In Vivo-Like Cell-Cycle Phase Distribution of Cancer Cells in Gelfoam® Histoculture Observed in Real Time by FUCCI Imaging
  14. Altmetric Badge
    Chapter 13 Methionine Dependency Determination of Human Patient Tumors in Gelfoam® Histoculture
  15. Altmetric Badge
    Chapter 14 Hair-Shaft Growth in Gelfoam® Histoculture of Skin and Isolated Hair Follicles
  16. Altmetric Badge
    Chapter 15 Hair Follicle-Associated Pluripotent (HAP) Stem Cells in Gelfoam® Histoculture for Use in Spinal Cord Repair
  17. Altmetric Badge
    Chapter 16 Nerve Growth and Interaction in Gelfoam® Histoculture: A Nervous System Organoid
  18. Altmetric Badge
    Chapter 17 Histoculture and Infection with HIV of Functional Human Lymphoid Tissue on Gelfoam®
  19. Altmetric Badge
    Chapter 18 Imaging DNA Repair After UV Irradiation Damage of Cancer Cells in Gelfoam® Histoculture
  20. Altmetric Badge
    Chapter 19 Comparison of “Dimensionality” of Cancer Cell Culture in Gelfoam® Histoculture and Matrigel
  21. Altmetric Badge
    Chapter 20 Imaging the Governing Step of Metastasis in Gelfoam® Histoculture
Attention for Chapter 16: Nerve Growth and Interaction in Gelfoam® Histoculture: A Nervous System Organoid
Altmetric Badge

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Nerve Growth and Interaction in Gelfoam® Histoculture: A Nervous System Organoid
Chapter number 16
Book title
3D Sponge-Matrix Histoculture
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7745-1_16
Pubmed ID
Book ISBNs
978-1-4939-7743-7, 978-1-4939-7745-1
Authors

Robert M. Hoffman, Sumiyuki Mii, Jennifer Duong, Yasuyuki Amoh

Abstract

Nestin-expressing hair follicle-associated pluripotent (HAP) stem cells reside mainly in the bulge area (BA) of the hair follicle but also in the dermal papilla (DP). The BA appears to be origin of HAP stem cells. Long-term Gelfoam® histoculture was established of whiskers isolated from transgenic mice, in which there is nestin-driven green fluorescent protein (ND-GFP). HAP stem cells trafficked from the BA toward the DP area and extensively grew out onto Gelfoam® forming nerve-like structures. These fibers express the neuron marker β-III tubulin-positive fibers and consisted of ND-GFP-expressing cells and extended up to 500 mm from the whisker nerve stump in Gelfoam® histoculture. The growing fibers had growth cones on their tips expressing F-actin indicating that the fibers were growing axons. HAP stem cell proliferation resulted in elongation of the follicle nerve and interaction with other nerves in 3D Gelfoam® histoculture, including the sciatic nerve, trigeminal nerve, and trigeminal nerve ganglion.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 20%
Student > Postgraduate 1 20%
Student > Doctoral Student 1 20%
Student > Master 1 20%
Unknown 1 20%
Readers by discipline Count As %
Unspecified 1 20%
Biochemistry, Genetics and Molecular Biology 1 20%
Neuroscience 1 20%
Medicine and Dentistry 1 20%
Unknown 1 20%