↓ Skip to main content

The Plant Endoplasmic Reticulum

Overview of attention for book
Cover of 'The Plant Endoplasmic Reticulum'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Labeling the ER for Light and Fluorescence Microscopy
  3. Altmetric Badge
    Chapter 2 3D Electron Microscopy of the ER
  4. Altmetric Badge
    Chapter 3 Characterization of Proteins Localized to Plant ER-PM Contact Sites
  5. Altmetric Badge
    Chapter 4 Preparation and Imaging of Specialized ER Using Super-Resolution and TEM Techniques
  6. Altmetric Badge
    Chapter 5 Quantitation of ER Structure and Function
  7. Altmetric Badge
    Chapter 6 Long-Term Imaging of Endoplasmic Reticulum Morphology in Embryos During Seed Germination
  8. Altmetric Badge
    Chapter 7 Dancing with the Stars: Using Image Analysis to Study the Choreography of the Endoplasmic Reticulum and Its Partners and of Movement Within Its Tubules
  9. Altmetric Badge
    Chapter 8 Preparation of Highly Enriched ER Membranes Using Free-Flow Electrophoresis
  10. Altmetric Badge
    Chapter 9 ER Microsome Preparation in Arabidopsis thaliana
  11. Altmetric Badge
    Chapter 10 ER Membrane Lipid Composition and Metabolism: Lipidomic Analysis
  12. Altmetric Badge
    Chapter 11 2in1 Vectors Improve In Planta BiFC and FRET Analyses
  13. Altmetric Badge
    Chapter 12 Metabolons on the Plant ER
  14. Altmetric Badge
    Chapter 13 Using Optical Tweezers Combined with Total Internal Reflection Microscopy to Study Interactions Between the ER and Golgi in Plant Cells
  15. Altmetric Badge
    Chapter 14 Protein Biosynthesis and Maturation in the ER
  16. Altmetric Badge
    Chapter 15 ER Membrane Protein Interactions Using the Split-Ubiquitin System (SUS)
  17. Altmetric Badge
    Chapter 16 Analysis of Protein Glycosylation in the ER
  18. Altmetric Badge
    Chapter 17 The Unfolded Protein Response
  19. Altmetric Badge
    Chapter 18 Unfolded Protein Response in Arabidopsis
  20. Altmetric Badge
    Chapter 19 Fluorescence Imaging of Autophagy-Mediated ER-to-Vacuole Trafficking in Plants
  21. Altmetric Badge
    Chapter 20 Imaging the ER and Endomembrane System in Cereal Endosperm
Attention for Chapter 3: Characterization of Proteins Localized to Plant ER-PM Contact Sites
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Characterization of Proteins Localized to Plant ER-PM Contact Sites
Chapter number 3
Book title
The Plant Endoplasmic Reticulum
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7389-7_3
Pubmed ID
Book ISBNs
978-1-4939-7388-0, 978-1-4939-7389-7
Authors

Pengwei Wang, Chris Hawes, Christine Richardson, Patrick J. Hussey

Abstract

Like in most eukaryotic cells, the plant endoplasmic reticulum (ER) network is physically linked to the plasma membrane (PM), forming ER-PM contact sites (EPCS). The protein complex required for maintaining the EPCS is composed of ER integral membrane proteins (e.g., VAP27, synaptotagmins), PM-associated proteins (e.g., NET3C), and the cytoskeleton. Here, we describe methods for identifying possible EPCS-associated proteins. These include GFP-tagged protein expression followed by image analysis, and immuno-gold labeling at the ultrastructural level. In combination, these methods can be used to identify the localization of putative EPCS proteins as well as used to postulate their subcellular function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 22%
Student > Ph. D. Student 2 22%
Student > Master 2 22%
Professor 1 11%
Researcher 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 67%
Agricultural and Biological Sciences 2 22%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2017.
All research outputs
#14,605,011
of 23,993,601 outputs
Outputs from Methods in molecular biology
#4,117
of 13,541 outputs
Outputs of similar age
#235,356
of 449,301 outputs
Outputs of similar age from Methods in molecular biology
#390
of 1,477 outputs
Altmetric has tracked 23,993,601 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,541 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,301 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,477 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.