↓ Skip to main content

The Plant Endoplasmic Reticulum

Overview of attention for book
Cover of 'The Plant Endoplasmic Reticulum'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Labeling the ER for Light and Fluorescence Microscopy
  3. Altmetric Badge
    Chapter 2 3D Electron Microscopy of the ER
  4. Altmetric Badge
    Chapter 3 Characterization of Proteins Localized to Plant ER-PM Contact Sites
  5. Altmetric Badge
    Chapter 4 Preparation and Imaging of Specialized ER Using Super-Resolution and TEM Techniques
  6. Altmetric Badge
    Chapter 5 Quantitation of ER Structure and Function
  7. Altmetric Badge
    Chapter 6 Long-Term Imaging of Endoplasmic Reticulum Morphology in Embryos During Seed Germination
  8. Altmetric Badge
    Chapter 7 Dancing with the Stars: Using Image Analysis to Study the Choreography of the Endoplasmic Reticulum and Its Partners and of Movement Within Its Tubules
  9. Altmetric Badge
    Chapter 8 Preparation of Highly Enriched ER Membranes Using Free-Flow Electrophoresis
  10. Altmetric Badge
    Chapter 9 ER Microsome Preparation in Arabidopsis thaliana
  11. Altmetric Badge
    Chapter 10 ER Membrane Lipid Composition and Metabolism: Lipidomic Analysis
  12. Altmetric Badge
    Chapter 11 2in1 Vectors Improve In Planta BiFC and FRET Analyses
  13. Altmetric Badge
    Chapter 12 Metabolons on the Plant ER
  14. Altmetric Badge
    Chapter 13 Using Optical Tweezers Combined with Total Internal Reflection Microscopy to Study Interactions Between the ER and Golgi in Plant Cells
  15. Altmetric Badge
    Chapter 14 Protein Biosynthesis and Maturation in the ER
  16. Altmetric Badge
    Chapter 15 ER Membrane Protein Interactions Using the Split-Ubiquitin System (SUS)
  17. Altmetric Badge
    Chapter 16 Analysis of Protein Glycosylation in the ER
  18. Altmetric Badge
    Chapter 17 The Unfolded Protein Response
  19. Altmetric Badge
    Chapter 18 Unfolded Protein Response in Arabidopsis
  20. Altmetric Badge
    Chapter 19 Fluorescence Imaging of Autophagy-Mediated ER-to-Vacuole Trafficking in Plants
  21. Altmetric Badge
    Chapter 20 Imaging the ER and Endomembrane System in Cereal Endosperm
Attention for Chapter 19: Fluorescence Imaging of Autophagy-Mediated ER-to-Vacuole Trafficking in Plants
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fluorescence Imaging of Autophagy-Mediated ER-to-Vacuole Trafficking in Plants
Chapter number 19
Book title
The Plant Endoplasmic Reticulum
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7389-7_19
Pubmed ID
Book ISBNs
978-1-4939-7388-0, 978-1-4939-7389-7
Authors

Hadas Peled-Zehavi, Gad Galili

Abstract

Macroautophagy (hereafter referred to as autophagy) is a conserved mechanism in eukaryotic cells that delivers unneeded cellular components for degradation in the lytic organelle. In plants, as in other eukaryotes, autophagy begins in the formation of cup-shaped double membranes that engulf cytosolic material. The double membrane closes to form autophagosomes that are then transported to the vacuole for degradation. Autophagy can function as a bulk nonselective process or as a selective process targeting specific proteins, protein aggregates, organelles, or other cellular components for degradation. The endoplasmic reticulum (ER) is linked to autophagy-related processes in multiple ways. The ER was suggested as a possible site for the nucleation of autophagosomes, and as a source for autophagosomal membranes. Furthermore, autophagy has an important role in ER homeostasis, and the ER is a target for a selective type of autophagy, ER-phagy, in response to ER stress. However, the detailed molecular mechanisms, especially in plants, are only now starting to be revealed.In this chapter, we describe the use of confocal imaging to follow the delivery of fluorescently tagged ER-associated proteins to the vacuole. We also describe the utilization of fluorescent protein fusions to look at the co-localization of a protein of interest with the autophagosome marker protein ATG8, a core autophagy machinery protein that is essential for selective autophagy processes.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 33%
Other 2 22%
Student > Ph. D. Student 1 11%
Student > Doctoral Student 1 11%
Researcher 1 11%
Other 1 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 33%
Agricultural and Biological Sciences 3 33%
Environmental Science 1 11%
Neuroscience 1 11%
Unknown 1 11%