↓ Skip to main content

Super-Resolution Microscopy

Overview of attention for book
Cover of 'Super-Resolution Microscopy'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics
  3. Altmetric Badge
    Chapter 2 Managing the Introduction of Super-Resolution Microscopy into a Core Facility
  4. Altmetric Badge
    Chapter 3 Live-Cell STED Imaging with the HyPer2 Biosensor
  5. Altmetric Badge
    Chapter 4 Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope
  6. Altmetric Badge
    Chapter 5 Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo
  7. Altmetric Badge
    Chapter 6 STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells
  8. Altmetric Badge
    Chapter 7 Four-Channel Super-Resolution Imaging by 3-D Structured Illumination
  9. Altmetric Badge
    Chapter 8 Correlative SIM-STORM Microscopy
  10. Altmetric Badge
    Chapter 9 Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples
  11. Altmetric Badge
    Chapter 10 Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles
  12. Altmetric Badge
    Chapter 11 Two-Color Single-Molecule Tracking in Live Cells
  13. Altmetric Badge
    Chapter 12 Fully Automated Targeted Confocal and Single-Molecule Localization Microscopy
  14. Altmetric Badge
    Chapter 13 Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
  15. Altmetric Badge
    Chapter 14 Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells
  16. Altmetric Badge
    Chapter 15 Synthesis of Janelia Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments
  17. Altmetric Badge
    Chapter 16 Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step
  18. Altmetric Badge
    Chapter 17 Correlative Single-Molecule Localization Microscopy and Confocal Microscopy
  19. Altmetric Badge
    Chapter 18 Correlative Fluorescence Super-Resolution Localization Microscopy and Platinum Replica EM on Unroofed Cells
  20. Altmetric Badge
    Chapter 19 In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT
  21. Altmetric Badge
    Chapter 20 Super-Resolution High Content Screening and Analysis
Attention for Chapter 13: Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
Altmetric Badge

Mentioned by

2 X users


16 Dimensions

Readers on

44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
Chapter number 13
Book title
Super-Resolution Microscopy
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7265-4_13
Pubmed ID
Book ISBNs
978-1-4939-7264-7, 978-1-4939-7265-4

Christopher L. German, Manasa V. Gudheti, Annette E. Fleckenstein, Erik M. Jorgensen, German, Christopher L., Gudheti, Manasa V., Fleckenstein, Annette E., Jorgensen, Erik M.


Localization microscopy techniques-such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM)-provide the highest precision for single-molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless-steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single-molecule localizations of synaptic vesicle and active zone proteins in three dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 23%
Researcher 6 14%
Student > Master 4 9%
Student > Bachelor 4 9%
Other 1 2%
Other 2 5%
Unknown 17 39%
Readers by discipline Count As %
Neuroscience 8 18%
Biochemistry, Genetics and Molecular Biology 6 14%
Physics and Astronomy 3 7%
Agricultural and Biological Sciences 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 4 9%
Unknown 19 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2018.
All research outputs
of 23,002,898 outputs
Outputs from Methods in molecular biology
of 13,156 outputs
Outputs of similar age
of 421,223 outputs
Outputs of similar age from Methods in molecular biology
of 1,074 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,156 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,223 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.