↓ Skip to main content

Super-Resolution Microscopy

Overview of attention for book
Cover of 'Super-Resolution Microscopy'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics
  3. Altmetric Badge
    Chapter 2 Managing the Introduction of Super-Resolution Microscopy into a Core Facility
  4. Altmetric Badge
    Chapter 3 Live-Cell STED Imaging with the HyPer2 Biosensor
  5. Altmetric Badge
    Chapter 4 Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope
  6. Altmetric Badge
    Chapter 5 Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo
  7. Altmetric Badge
    Chapter 6 STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells
  8. Altmetric Badge
    Chapter 7 Four-Channel Super-Resolution Imaging by 3-D Structured Illumination
  9. Altmetric Badge
    Chapter 8 Correlative SIM-STORM Microscopy
  10. Altmetric Badge
    Chapter 9 Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples
  11. Altmetric Badge
    Chapter 10 Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles
  12. Altmetric Badge
    Chapter 11 Two-Color Single-Molecule Tracking in Live Cells
  13. Altmetric Badge
    Chapter 12 Fully Automated Targeted Confocal and Single-Molecule Localization Microscopy
  14. Altmetric Badge
    Chapter 13 Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
  15. Altmetric Badge
    Chapter 14 Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells
  16. Altmetric Badge
    Chapter 15 Synthesis of Janelia Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments
  17. Altmetric Badge
    Chapter 16 Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step
  18. Altmetric Badge
    Chapter 17 Correlative Single-Molecule Localization Microscopy and Confocal Microscopy
  19. Altmetric Badge
    Chapter 18 Correlative Fluorescence Super-Resolution Localization Microscopy and Platinum Replica EM on Unroofed Cells
  20. Altmetric Badge
    Chapter 19 In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT
  21. Altmetric Badge
    Chapter 20 Super-Resolution High Content Screening and Analysis
Attention for Chapter 5: Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo
Chapter number 5
Book title
Super-Resolution Microscopy
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7265-4_5
Pubmed ID
Book ISBNs
978-1-4939-7264-7, 978-1-4939-7265-4
Authors

Mirelle J. T. ter Veer, Thomas Pfeiffer, U. Valentin Nägerl

Abstract

The advent of super-resolution microscopy offers to bridge the gap between electron and light microscopy. It has opened up the possibility of visualizing cellular structures and dynamic signaling events on the "mesoscale" well below the classic diffraction barrier of light microscopy (10-200 nm), while essentially retaining the advantages of fluorescence microscopy concerning multicolor labeling, detection sensitivity, signal contrast, live-cell imaging, and temporal resolution.From among the new super-resolution techniques, STED microscopy stands out as a laser-scanning imaging modality, which enables nanoscale volume-metric imaging of cellular morphology. In combination with two-photon (2P) excitation, STED microscopy facilitates the visualization of the highly complex and dynamic morphology of neurons and glia cells deep inside living brain slices and in the intact brain in vivo.Here, we present an overview of the principles and implementation of 2P-STED microscopy in vivo, providing the neurobiological context and motivation for this technique, and illustrating its capacity by showing images of dendritic spines and microglial processes obtained from living brain tissue.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 17%
Student > Master 5 12%
Researcher 5 12%
Professor 4 10%
Student > Bachelor 3 7%
Other 8 20%
Unknown 9 22%
Readers by discipline Count As %
Neuroscience 9 22%
Biochemistry, Genetics and Molecular Biology 6 15%
Engineering 3 7%
Physics and Astronomy 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 8 20%
Unknown 10 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2018.
All research outputs
#7,540,093
of 23,002,898 outputs
Outputs from Methods in molecular biology
#2,339
of 13,156 outputs
Outputs of similar age
#141,629
of 421,223 outputs
Outputs of similar age from Methods in molecular biology
#246
of 1,074 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,156 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,223 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.