↓ Skip to main content

Kinase Signaling Networks

Overview of attention for book
Cover of 'Kinase Signaling Networks'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Optogenetic Control of Ras/Erk Signaling Using the Phy–PIF System
  3. Altmetric Badge
    Chapter 2 Dissecting Kinase Effector Signaling Using the RapRTAP Methodology
  4. Altmetric Badge
    Chapter 3 Single-Cell Imaging of ERK Signaling Using Fluorescent Biosensors
  5. Altmetric Badge
    Chapter 4 Quantification of Cell Signaling Networks Using Kinase Activity Chemosensors
  6. Altmetric Badge
    Chapter 5 Expression of Recombinant Phosphoproteins for Signal Transduction Studies
  7. Altmetric Badge
    Chapter 6 Allosteric Modulation of Src Family Kinases with ATP-Competitive Inhibitors
  8. Altmetric Badge
    Chapter 7 Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay
  9. Altmetric Badge
    Chapter 8 Proteomic Profiling of Protein Kinase Inhibitor Targets by Mass Spectrometry
  10. Altmetric Badge
    Chapter 9 Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification
  11. Altmetric Badge
    Chapter 10 High-Content Imaging and RNAi Screens for Investigating Kinase Network Plasticity
  12. Altmetric Badge
    Chapter 11 Analysis of Drug Resistance Using Kinome-Wide Functional Screens
  13. Altmetric Badge
    Chapter 12 Identification and Validation of Driver Kinases from Next-Generation Sequencing Data
  14. Altmetric Badge
    Chapter 13 Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis
  15. Altmetric Badge
    Chapter 14 Cell-Specific Labeling for Analyzing Bidirectional Signaling by Mass Spectrometry
  16. Altmetric Badge
    Chapter 15 Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics
  17. Altmetric Badge
    Chapter 16 Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines
  18. Altmetric Badge
    Chapter 17 Targeted Analysis of Phosphotyrosine Signaling by Multiple Reaction Monitoring Mass Spectrometry
  19. Altmetric Badge
    Chapter 18 Phosphoproteomic Analysis of Isolated Mitochondria in Yeast
  20. Altmetric Badge
    Chapter 19 A Methodology for Comprehensive Analysis of Toll-Like Receptor Signaling in Macrophages
  21. Altmetric Badge
    Chapter 20 Absolute Phosphorylation Stoichiometry Analysis by Motif-Targeting Quantitative Mass Spectrometry
  22. Altmetric Badge
    Chapter 21 Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics
  23. Altmetric Badge
    Chapter 22 Mass Spectrometry Analysis of Spatial Protein Networks by Colocalization Analysis (COLA)
  24. Altmetric Badge
    Chapter 23 Development of Selected Reaction Monitoring Methods to Systematically Quantify Kinase Abundance and Phosphorylation Stoichiometry in Human Samples
  25. Altmetric Badge
    Chapter 24 Analysis of Signaling Networks at the Single-Cell Level Using Mass Cytometry
  26. Altmetric Badge
    Chapter 25 Magnetic Resonance Spectroscopy (MRS)-Based Methods for Examining Cancer Metabolism in Response to Oncogenic Kinase Drug Treatment
  27. Altmetric Badge
    Chapter 26 Deconstructing the Metabolic Networks of Oncogenic Signaling Using Targeted Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  28. Altmetric Badge
    Chapter 27 Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols
  29. Altmetric Badge
    Chapter 28 An Interdisciplinary Approach for Designing Kinetic Models of the Ras/MAPK Signaling Pathway
  30. Altmetric Badge
    Chapter 29 Databases and Computational Tools for Evolutionary Analysis of Protein Phosphorylation
  31. Altmetric Badge
    Chapter 30 Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations
  32. Altmetric Badge
    Chapter 31 Target Inhibition Maps Based on Responses to Kinase Inhibitors
  33. Altmetric Badge
    Chapter 32 Partial Least Squares Regression Models for the Analysis of Kinase Signaling
Attention for Chapter 1: Optogenetic Control of Ras/Erk Signaling Using the Phy–PIF System
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Optogenetic Control of Ras/Erk Signaling Using the Phy–PIF System
Chapter number 1
Book title
Kinase Signaling Networks
Published in
Methods in molecular biology, July 2017
DOI 10.1007/978-1-4939-7154-1_1
Pubmed ID
Book ISBNs
978-1-4939-7152-7, 978-1-4939-7154-1
Authors

Alexander G. Goglia, Maxwell Z. Wilson, Daniel B. DiGiorno, Jared E. Toettcher

Abstract

The Ras/Erk signaling pathway plays a central role in diverse cellular processes ranging from development to immune cell activation to neural plasticity to cancer. In recent years, this pathway has been widely studied using live-cell fluorescent biosensors, revealing complex Erk dynamics that arise in many cellular contexts. Yet despite these high-resolution tools for measurement, the field has lacked analogous tools for control over Ras/Erk signaling in live cells. Here, we provide detailed methods for one such tool based on the optical control of Ras activity, which we call "Opto-SOS." Expression of the Opto-SOS constructs can be coupled with a live-cell reporter of Erk activity to reveal highly quantitative input-to-output maps of the pathway. Detailed herein are protocols for expressing the Opto-SOS system in cultured cells, purifying the small molecule cofactor necessary for optical stimulation, imaging Erk responses using live-cell microscopy, and processing the imaging data to quantify Ras/Erk signaling dynamics.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Researcher 5 14%
Student > Bachelor 4 11%
Professor 3 9%
Student > Master 2 6%
Other 5 14%
Unknown 7 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 43%
Agricultural and Biological Sciences 3 9%
Neuroscience 3 9%
Engineering 2 6%
Chemistry 1 3%
Other 2 6%
Unknown 9 26%