↓ Skip to main content

ERK Signaling

Overview of attention for book
Cover of 'ERK Signaling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 How Genetics Has Helped Piece Together the MAPK Signaling Pathway.
  3. Altmetric Badge
    Chapter 2 In Vitro Enzyme Kinetics Analysis of EGFR.
  4. Altmetric Badge
    Chapter 3 High-Throughput Analysis of Mammalian Receptor Tyrosine Kinase Activation in Yeast Cells.
  5. Altmetric Badge
    Chapter 4 Structural Studies of ERK2 Protein Complexes.
  6. Altmetric Badge
    Chapter 5 Isolation and Characterization of Intrinsically Active (MEK-Independent) Mutants of Mpk1/Erk.
  7. Altmetric Badge
    Chapter 6 Assaying Activation and Subcellular Localization of ERK in Cells and Tissues.
  8. Altmetric Badge
    Chapter 7 Detection and Functional Analysis of SUMO-Modified MEK.
  9. Altmetric Badge
    Chapter 8 Single-Step Affinity Purification of ERK Signaling Complexes Using the Streptavidin-Binding Peptide (SBP) Tag.
  10. Altmetric Badge
    Chapter 9 High-Throughput In Vitro Identification of Direct MAPK/Erk Substrates.
  11. Altmetric Badge
    Chapter 10 Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE.
  12. Altmetric Badge
    Chapter 11 Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation.
  13. Altmetric Badge
    Chapter 12 Cell-Based Assays to Study ERK Pathway/Caveolin1 Interactions.
  14. Altmetric Badge
    Chapter 13 The Nuclear Translocation of ERK.
  15. Altmetric Badge
    Chapter 14 Visualization of RAS/MAPK Signaling In Situ by the Proximity Ligation Assay (PLA).
  16. Altmetric Badge
    Chapter 15 Measuring ERK Activity Dynamics in Single Living Cells Using FRET Biosensors.
  17. Altmetric Badge
    Chapter 16 Quantifying Tensile Force and ERK Phosphorylation on Actin Stress Fibers.
  18. Altmetric Badge
    Chapter 17 Co-culture Activation of MAP Kinase in Drosophila S2 Cells.
  19. Altmetric Badge
    Chapter 18 ERK Signaling
  20. Altmetric Badge
    Chapter 19 3D Organotypic Culture Model to Study Components of ERK Signaling.
  21. Altmetric Badge
    Chapter 20 Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.
  22. Altmetric Badge
    Chapter 21 Genome-Wide Analysis of RAS/ERK Signaling Targets.
  23. Altmetric Badge
    Chapter 22 Probing Chromatin Modifications in Response to ERK Signaling.
  24. Altmetric Badge
    Chapter 23 Analyzing pERK Activation During Planarian Regeneration.
  25. Altmetric Badge
    Chapter 24 Discovering Functional ERK Substrates Regulating Caenorhabditis elegans Germline Development.
  26. Altmetric Badge
    Chapter 25 Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images.
  27. Altmetric Badge
    Chapter 26 Using CRISPR-Cas9 to Study ERK Signaling in Drosophila.
  28. Altmetric Badge
    Chapter 27 Analyzing ERK Signal Dynamics During Zebrafish Somitogenesis.
  29. Altmetric Badge
    Chapter 28 Modeling RASopathies with Genetically Modified Mouse Models.
  30. Altmetric Badge
    Chapter 29 Dissecting Cell-Fate Determination Through Integrated Mathematical Modeling of the ERK/MAPK Signaling Pathway.
Attention for Chapter 3: High-Throughput Analysis of Mammalian Receptor Tyrosine Kinase Activation in Yeast Cells.
Altmetric Badge

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
High-Throughput Analysis of Mammalian Receptor Tyrosine Kinase Activation in Yeast Cells.
Chapter number 3
Book title
ERK Signaling
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6424-6_3
Pubmed ID
Book ISBNs
978-1-4939-6422-2, 978-1-4939-6424-6
Authors

Nobuo Yoshimoto, Shun’ichi Kuroda

Editors

Gerardo Jimenez

Abstract

Tyrosine phosphorylation is an essential posttranslational modification in intracellular signaling molecules. Since tyrosine phosphorylation occurs in less than 0.1 % of all phosphorylated amino acids in mammalian cells, it is difficult to detect the nascent phosphotyrosine at a high signal-to-noise ratio due to high intracellular backgrounds (i.e., unexpected crosstalks among endogenous signaling molecules). In order to address this issue, we reconstituted the mammalian signaling pathway involving an extracellular ligand and a receptor tyrosine kinase (RTK) in Saccharomyces cerevisiae, a lower eukaryote that lacks endogenous tyrosine kinases. In this chapter, we describe a method for high-throughput analysis of ligand-receptor interaction by combining the yeast cell-surface display technique with an automated single-cell analysis and isolation system. Yeast cells coexpressing the cell-wall-anchored form of the human epidermal growth factor (EGF) and the human EGF receptor (EGFR) fused with a signal peptide at the N terminus facilitated the interaction of EGF with EGFR in an autocrine manner, followed by EGFR oligomerization and subsequent autophosphorylation. Furthermore, yeast cells expressing cell-wall-anchored forms of a conformationally constrained random peptide library instead of EGF are treated with a fluorophore-labeled anti-phosphorylated EGFR antibody and then subjected to the automated single-cell analysis and isolation system. The yeast cells with the highest level of fluorescence were shown to display novel and efficient EGFR agonistic peptides. Thus, our yeast display technique serves as a quantitative measurement for RTK activation, which is applicable to high-throughput de novo screening of RTK agonistic peptides.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 25%
Researcher 2 25%
Professor 1 13%
Librarian 1 13%
Student > Bachelor 1 13%
Other 1 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 25%
Agricultural and Biological Sciences 2 25%
Arts and Humanities 1 13%
Medicine and Dentistry 1 13%
Neuroscience 1 13%
Other 1 13%