↓ Skip to main content

High Throughput Screening

Overview of attention for book
Cover of 'High Throughput Screening'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Design and Implementation of High-Throughput Screening Assays
  3. Altmetric Badge
    Chapter 2 Characterization of Inhibitor Binding Through Multiple Inhibitor Analysis: A Novel Local Fitting Method
  4. Altmetric Badge
    Chapter 3 High Throughput Screening
  5. Altmetric Badge
    Chapter 4 Structure-Based Virtual Screening of Commercially Available Compound Libraries
  6. Altmetric Badge
    Chapter 5 AlphaScreen-Based Assays: Ultra-High-Throughput Screening for Small-Molecule Inhibitors of Challenging Enzymes and Protein-Protein Interactions
  7. Altmetric Badge
    Chapter 6 Instrument Quality Control
  8. Altmetric Badge
    Chapter 7 Application of Fluorescence Polarization in HTS Assays
  9. Altmetric Badge
    Chapter 8 Time-Resolved Fluorescence Assays
  10. Altmetric Badge
    Chapter 9 Protein Kinase Selectivity Profiling Using Microfluid Mobility Shift Assays
  11. Altmetric Badge
    Chapter 10 Screening for Inhibitors of Kinase Autophosphorylation
  12. Altmetric Badge
    Chapter 11 A Fluorescence-Based High-Throughput Screening Assay to Identify Growth Inhibitors of the Pathogenic Fungus Aspergillus fumigatus
  13. Altmetric Badge
    Chapter 12 High Throughput Screening
  14. Altmetric Badge
    Chapter 13 Identification of State-Dependent Blockers for Voltage-Gated Calcium Channels Using a FLIPR-Based Assay
  15. Altmetric Badge
    Chapter 14 A Luciferase Reporter Gene System for High-Throughput Screening of γ -Globin Gene Activators
  16. Altmetric Badge
    Chapter 15 A High-Throughput Flow Cytometry Assay for Identification of Inhibitors of 3′,5′-Cyclic Adenosine Monophosphate Efflux
  17. Altmetric Badge
    Chapter 16 High-Throughput Cell Toxicity Assays
  18. Altmetric Badge
    Chapter 17 BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells
  19. Altmetric Badge
    Chapter 18 Application of Imaging-Based Assays in Microplate Formats for High-Content Screening
Attention for Chapter 3: High Throughput Screening
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
High Throughput Screening
Chapter number 3
Book title
High Throughput Screening
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3673-1_3
Pubmed ID
Book ISBNs
978-1-4939-3671-7, 978-1-4939-3673-1
Authors

Rohman, Mattias, Wingfield, Jonathan, Mattias Rohman, Jonathan Wingfield

Abstract

In order to detect a biochemical analyte with a mass spectrometer (MS) it is necessary to ionize the analyte of interest. The analyte can be ionized by a number of different mechanisms, however, one common method is electrospray ionization (ESI). Droplets of analyte are sprayed through a highly charged field, the droplets pick up charge, and this is transferred to the analyte. High levels of salt in the assay buffer will potentially steal charge from the analyte and suppress the MS signal. In order to avoid this suppression of signal, salt is often removed from the sample prior to injection into the MS. Traditional ESI MS relies on liquid chromatography (LC) to remove the salt and reduce matrix effects, however, this is a lengthy process. Here we describe the use of RapidFire™ coupled to a triple-quadrupole MS for high-throughput screening. This system uses solid-phase extraction to de-salt samples prior to injection, reducing processing time such that a sample is injected into the MS ~every 10 s.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 19%
Researcher 4 19%
Student > Ph. D. Student 3 14%
Other 1 5%
Student > Doctoral Student 1 5%
Other 2 10%
Unknown 6 29%
Readers by discipline Count As %
Chemistry 8 38%
Agricultural and Biological Sciences 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Economics, Econometrics and Finance 1 5%
Engineering 1 5%
Other 0 0%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2016.
All research outputs
#20,334,427
of 22,879,161 outputs
Outputs from Methods in molecular biology
#9,918
of 13,132 outputs
Outputs of similar age
#330,750
of 393,703 outputs
Outputs of similar age from Methods in molecular biology
#1,054
of 1,471 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,132 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,703 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.