↓ Skip to main content

High Throughput Screening

Overview of attention for book
Cover of 'High Throughput Screening'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Design and Implementation of High-Throughput Screening Assays
  3. Altmetric Badge
    Chapter 2 Characterization of Inhibitor Binding Through Multiple Inhibitor Analysis: A Novel Local Fitting Method
  4. Altmetric Badge
    Chapter 3 High Throughput Screening
  5. Altmetric Badge
    Chapter 4 Structure-Based Virtual Screening of Commercially Available Compound Libraries
  6. Altmetric Badge
    Chapter 5 AlphaScreen-Based Assays: Ultra-High-Throughput Screening for Small-Molecule Inhibitors of Challenging Enzymes and Protein-Protein Interactions
  7. Altmetric Badge
    Chapter 6 Instrument Quality Control
  8. Altmetric Badge
    Chapter 7 Application of Fluorescence Polarization in HTS Assays
  9. Altmetric Badge
    Chapter 8 Time-Resolved Fluorescence Assays
  10. Altmetric Badge
    Chapter 9 Protein Kinase Selectivity Profiling Using Microfluid Mobility Shift Assays
  11. Altmetric Badge
    Chapter 10 Screening for Inhibitors of Kinase Autophosphorylation
  12. Altmetric Badge
    Chapter 11 A Fluorescence-Based High-Throughput Screening Assay to Identify Growth Inhibitors of the Pathogenic Fungus Aspergillus fumigatus
  13. Altmetric Badge
    Chapter 12 High Throughput Screening
  14. Altmetric Badge
    Chapter 13 Identification of State-Dependent Blockers for Voltage-Gated Calcium Channels Using a FLIPR-Based Assay
  15. Altmetric Badge
    Chapter 14 A Luciferase Reporter Gene System for High-Throughput Screening of γ -Globin Gene Activators
  16. Altmetric Badge
    Chapter 15 A High-Throughput Flow Cytometry Assay for Identification of Inhibitors of 3′,5′-Cyclic Adenosine Monophosphate Efflux
  17. Altmetric Badge
    Chapter 16 High-Throughput Cell Toxicity Assays
  18. Altmetric Badge
    Chapter 17 BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells
  19. Altmetric Badge
    Chapter 18 Application of Imaging-Based Assays in Microplate Formats for High-Content Screening
Attention for Chapter 1: Design and Implementation of High-Throughput Screening Assays
Altmetric Badge

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Design and Implementation of High-Throughput Screening Assays
Chapter number 1
Book title
High Throughput Screening
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3673-1_1
Pubmed ID
Book ISBNs
978-1-4939-3671-7, 978-1-4939-3673-1
Authors

David J. Powell, Robert P. Hertzberg, Ricardo Macarrόn, Powell, David J., Hertzberg, Robert P., Macarrόn, Ricardo

Abstract

HTS remains at the core of the drug discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful consideration of many options and variables, starting with the choice of screening strategy and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines should be established to ensure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 7%
Unknown 14 93%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 27%
Student > Doctoral Student 3 20%
Student > Ph. D. Student 3 20%
Researcher 1 7%
Professor > Associate Professor 1 7%
Other 0 0%
Unknown 3 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 33%
Pharmacology, Toxicology and Pharmaceutical Science 3 20%
Agricultural and Biological Sciences 2 13%
Environmental Science 1 7%
Unknown 4 27%