↓ Skip to main content

Pulmonary Vasculature Redox Signaling in Health and Disease

Overview of attention for book
Cover of 'Pulmonary Vasculature Redox Signaling in Health and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Adventitial Fibroblast Nox4 Expression and ROS Signaling in Pulmonary Arterial Hypertension
  3. Altmetric Badge
    Chapter 2 Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension
  4. Altmetric Badge
    Chapter 3 Molecular Basis of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension
  5. Altmetric Badge
    Chapter 4 Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension
  6. Altmetric Badge
    Chapter 5 Redox Regulation of the Superoxide Dismutases SOD3 and SOD2 in the Pulmonary Circulation
  7. Altmetric Badge
    Chapter 6 A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension
  8. Altmetric Badge
    Chapter 7 Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension
  9. Altmetric Badge
    Chapter 8 ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS)
  10. Altmetric Badge
    Chapter 9 Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD
  11. Altmetric Badge
    Chapter 10 Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension
  12. Altmetric Badge
    Chapter 11 Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature
  13. Altmetric Badge
    Chapter 12 Lung Ischaemia–Reperfusion Injury: The Role of Reactive Oxygen Species
  14. Altmetric Badge
    Chapter 13 Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology
  15. Altmetric Badge
    Chapter 14 Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension
  16. Altmetric Badge
    Chapter 15 Hydrogen Sulfide as an O 2 Sensor: A Critical Analysis
  17. Altmetric Badge
    Chapter 16 Redox Signaling and Persistent Pulmonary Hypertension of the Newborn
  18. Altmetric Badge
    Chapter 17 Cross Talk Between Mitochondrial Reactive Oxygen Species and Sarcoplasmic Reticulum Calcium in Pulmonary Arterial Smooth Muscle Cells
  19. Altmetric Badge
    Chapter 18 Endothelial Cell Reactive Oxygen Species and Ca2+ Signaling in Pulmonary Hypertension
  20. Altmetric Badge
    Chapter 19 Redox Signaling in the Right Ventricle
  21. Altmetric Badge
    Chapter 20 Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function
  22. Altmetric Badge
    Chapter 21 From Physiological Redox Signalling to Oxidant Stress
  23. Altmetric Badge
    Chapter 22 Emerging Role of MicroRNAs and Long Noncoding RNAs in Healthy and Diseased Lung
  24. Altmetric Badge
    Chapter 23 Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling
  25. Altmetric Badge
    Chapter 24 Mitochondrial and Metabolic Drivers of Pulmonary Vascular Endothelial Dysfunction in Pulmonary Hypertension
  26. Altmetric Badge
    Chapter 25 Subcellular Redox Signaling
  27. Altmetric Badge
    Chapter 26 Reactive Oxygen Species in COPD-Related Vascular Remodeling
Attention for Chapter 20: Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function
Altmetric Badge

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function
Chapter number 20
Book title
Pulmonary Vasculature Redox Signaling in Health and Disease
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-3-319-63245-2_20
Pubmed ID
Book ISBNs
978-3-31-963244-5, 978-3-31-963245-2
Authors

Michael Thompson, Rodney D. Britt, Christina M. Pabelick, Y. S. Prakash, Thompson, Michael, Britt, Rodney D., Pabelick, Christina M., Prakash, Y. S.

Abstract

Hypoxia is recognized as a contributor to pulmonary vascular diseases such as pulmonary hypertension. Hypoxia-induced inflammatory changes can enhance structural and functional changes in pulmonary artery (PA) in the context of PH. Accordingly, understanding how hypoxia and inflammation are linked in the context of pulmonary artery structure and function could be relevant towards development of novel therapies for PH. In this regard, factors such as thymic stromal lymphopoietin (TSLP), an inflammatory cytokine, and brain-derived neurotrophic factor (BDNF), a neurotrophin, have been found critical for nonvascular systems such as airway and asthma. While TSLP canonically affects the immune system, in nonvascular systems, noncanonical effects such as altered [Ca(2+)]i and cell proliferation have been noted: aspects also relevant to the PA, where there is currently little to no data. Similarly, better known in the nervous system, there is increasing evidence that BDNF is locally produced by structural cells of the airway and can contribute to asthma pathophysiology. In this chapter, we summarize the potential relevance of factors such as TSLP and BDNF to the PA and in the context of hypoxia influences towards development of PH. We focus on cell sources and targets such as PA endothelial cells (PAECs) and smooth muscle cells (PASMCs), and the effects of TSLP or BDNF on intracellular Ca(2+) responses to vasoconstrictor agonist, cell proliferation, and potential signaling cascades involved.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 20%
Student > Bachelor 1 20%
Researcher 1 20%
Unknown 2 40%
Readers by discipline Count As %
Medicine and Dentistry 2 40%
Materials Science 1 20%
Biochemistry, Genetics and Molecular Biology 1 20%
Unknown 1 20%