↓ Skip to main content

Muscle Stem Cells

Overview of attention for book
Cover of 'Muscle Stem Cells'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Muscle Stem Cells: A Model System for Adult Stem Cell Biology
  3. Altmetric Badge
    Chapter 2 Isolation of Muscle Stem Cells from Mouse Skeletal Muscle
  4. Altmetric Badge
    Chapter 3 Primary Mouse Myoblast Purification using Magnetic Cell Separation
  5. Altmetric Badge
    Chapter 4 Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cell
  6. Altmetric Badge
    Chapter 5 Characterization of Drosophila Muscle Stem Cell-Like Adult Muscle Precursors
  7. Altmetric Badge
    Chapter 6 Using Transgenic Zebrafish to Study Muscle Stem/Progenitor Cells
  8. Altmetric Badge
    Chapter 7 Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle
  9. Altmetric Badge
    Chapter 8 Isolation and Characterization of Vessel-Associated Stem/Progenitor Cells from Skeletal Muscle
  10. Altmetric Badge
    Chapter 9 Fibro/Adipogenic Progenitors (FAPs): Isolation by FACS and Culture
  11. Altmetric Badge
    Chapter 10 Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells
  12. Altmetric Badge
    Chapter 11 Engraftment of FACS Isolated Muscle Stem Cells into Injured Skeletal Muscle
  13. Altmetric Badge
    Chapter 12 Transplantation of Skeletal Muscle Stem Cells
  14. Altmetric Badge
    Chapter 13 Simultaneous Measurement of Mitochondrial and Glycolytic Activity in Quiescent Muscle Stem Cells
  15. Altmetric Badge
    Chapter 14 Monitoring Autophagy in Muscle Stem Cells
  16. Altmetric Badge
    Chapter 15 Mimicking Muscle Stem Cell Quiescence in Culture: Methods for Synchronization in Reversible Arrest
  17. Altmetric Badge
    Chapter 16 Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro
  18. Altmetric Badge
    Chapter 17 Effects of Macrophage Conditioned-Medium on Murine and Human Muscle Cells: Analysis of Proliferation, Differentiation, and Fusion
  19. Altmetric Badge
    Chapter 18 Optimization of Satellite Cell Culture Through Biomaterials
  20. Altmetric Badge
    Chapter 19 Systematic Identification of Genes Regulating Muscle Stem Cell Self-Renewal and Differentiation
  21. Altmetric Badge
    Chapter 20 Bioinformatics for Novel Long Intergenic Noncoding RNA (lincRNA) Identification in Skeletal Muscle Cells
Attention for Chapter 15: Mimicking Muscle Stem Cell Quiescence in Culture: Methods for Synchronization in Reversible Arrest
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Mimicking Muscle Stem Cell Quiescence in Culture: Methods for Synchronization in Reversible Arrest
Chapter number 15
Book title
Muscle Stem Cells
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6771-1_15
Pubmed ID
Book ISBNs
978-1-4939-6769-8, 978-1-4939-6771-1
Authors

Reety Arora, Mohammed Rumman, Nisha Venugopal, Hardik Gala, Jyotsna Dhawan

Editors

Eusebio Perdiguero, DDW Cornelison

Abstract

Growing evidence supports the view that in adult stem cells, the defining stem cell features of potency and self-renewal are associated with the quiescent state. Thus, uncovering the molecular logic of this reversibly arrested state underlies not only a fundamental understanding of adult tissue dynamics but also hopes for therapeutic regeneration and rejuvenation of damaged or aging tissue. A key question concerns how adult stem cells use quiescence to establish or reinforce the property of self-renewal. Since self-renewal is largely studied by assays that measure proliferation, the concept of self-renewal programs imposed during non-proliferating conditions is counterintuitive. However, there is increasing evidence generated by deconstructing the quiescent state that highlights how programs characteristic of this particular cell cycle exit may enhance stem cell capabilities, through both cell-intrinsic and extrinsic programs.Toward this end, culture models that recapitulate key aspects of stem cell quiescence are useful for molecular analysis to explore attributes and regulation of the quiescent state. In this chapter, we review the different methods used to generate homogeneous populations of quiescent muscle cells, largely by manipulating culture conditions that feed into core signaling programs that regulate the cell cycle. We also provide detailed protocols developed or refined in our lab over the past two decades.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Researcher 4 17%
Student > Master 3 13%
Professor 3 13%
Student > Bachelor 2 9%
Other 5 22%
Unknown 1 4%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 48%
Agricultural and Biological Sciences 7 30%
Unspecified 1 4%
Immunology and Microbiology 1 4%
Physics and Astronomy 1 4%
Other 0 0%
Unknown 2 9%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2019.
All research outputs
#12,952,129
of 21,181,573 outputs
Outputs from Methods in molecular biology
#3,431
of 11,953 outputs
Outputs of similar age
#146,403
of 276,359 outputs
Outputs of similar age from Methods in molecular biology
#2
of 21 outputs
Altmetric has tracked 21,181,573 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,953 research outputs from this source. They receive a mean Attention Score of 3.3. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,359 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.