↓ Skip to main content

Muscle Stem Cells

Overview of attention for book
Cover of 'Muscle Stem Cells'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Muscle Stem Cells: A Model System for Adult Stem Cell Biology
  3. Altmetric Badge
    Chapter 2 Isolation of Muscle Stem Cells from Mouse Skeletal Muscle
  4. Altmetric Badge
    Chapter 3 Primary Mouse Myoblast Purification using Magnetic Cell Separation
  5. Altmetric Badge
    Chapter 4 Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cell
  6. Altmetric Badge
    Chapter 5 Characterization of Drosophila Muscle Stem Cell-Like Adult Muscle Precursors
  7. Altmetric Badge
    Chapter 6 Using Transgenic Zebrafish to Study Muscle Stem/Progenitor Cells
  8. Altmetric Badge
    Chapter 7 Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle
  9. Altmetric Badge
    Chapter 8 Isolation and Characterization of Vessel-Associated Stem/Progenitor Cells from Skeletal Muscle
  10. Altmetric Badge
    Chapter 9 Fibro/Adipogenic Progenitors (FAPs): Isolation by FACS and Culture
  11. Altmetric Badge
    Chapter 10 Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells
  12. Altmetric Badge
    Chapter 11 Engraftment of FACS Isolated Muscle Stem Cells into Injured Skeletal Muscle
  13. Altmetric Badge
    Chapter 12 Transplantation of Skeletal Muscle Stem Cells
  14. Altmetric Badge
    Chapter 13 Simultaneous Measurement of Mitochondrial and Glycolytic Activity in Quiescent Muscle Stem Cells
  15. Altmetric Badge
    Chapter 14 Monitoring Autophagy in Muscle Stem Cells
  16. Altmetric Badge
    Chapter 15 Mimicking Muscle Stem Cell Quiescence in Culture: Methods for Synchronization in Reversible Arrest
  17. Altmetric Badge
    Chapter 16 Methods for Observing and Quantifying Muscle Satellite Cell Motility and Invasion In Vitro
  18. Altmetric Badge
    Chapter 17 Effects of Macrophage Conditioned-Medium on Murine and Human Muscle Cells: Analysis of Proliferation, Differentiation, and Fusion
  19. Altmetric Badge
    Chapter 18 Optimization of Satellite Cell Culture Through Biomaterials
  20. Altmetric Badge
    Chapter 19 Systematic Identification of Genes Regulating Muscle Stem Cell Self-Renewal and Differentiation
  21. Altmetric Badge
    Chapter 20 Bioinformatics for Novel Long Intergenic Noncoding RNA (lincRNA) Identification in Skeletal Muscle Cells
Attention for Chapter 8: Isolation and Characterization of Vessel-Associated Stem/Progenitor Cells from Skeletal Muscle
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Isolation and Characterization of Vessel-Associated Stem/Progenitor Cells from Skeletal Muscle
Chapter number 8
Book title
Muscle Stem Cells
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6771-1_8
Pubmed ID
Book ISBNs
978-1-4939-6769-8, 978-1-4939-6771-1
Authors

Rossana Tonlorenzi, Giuliana Rossi, Graziella Messina

Editors

Eusebio Perdiguero, DDW Cornelison

Abstract

More than 10 years ago, we isolated from mouse embryonic dorsal aorta a population of vessel-associated stem/progenitor cells, originally named mesoangioblasts (MABs ) , capable to differentiate in all mesodermal-derived tissues, including skeletal muscle. Similar though not identical cells have been later isolated and characterized from small vessels of adult mouse and human skeletal muscles. When delivered through the arterial circulation, MABs cross the blood vessel wall and participate in skeletal muscle regeneration , leading to an amelioration of muscular dystrophies in different preclinical animal models. As such, human MABs have been used under clinical-grade conditions for a Phase I/II clinical trial for Duchenne muscular dystrophy , just concluded. Although some pericyte markers can be used to identify mouse and human MABs , no single unequivocal marker can be used to isolate MABs . As a result, MABs are mainly defined by their isolation method and functional properties. This chapter provides detailed methods for isolation, culture, and characterization of MABs in light of the recent identification of a new marker, PW1 /Peg3, to screen and identify competent MABs before their use in cell therapy.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 22%
Student > Ph. D. Student 4 22%
Lecturer > Senior Lecturer 2 11%
Student > Doctoral Student 1 6%
Student > Bachelor 1 6%
Other 0 0%
Unknown 6 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 28%
Biochemistry, Genetics and Molecular Biology 4 22%
Medicine and Dentistry 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Unknown 6 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2018.
All research outputs
#20,408,464
of 22,958,253 outputs
Outputs from Methods in molecular biology
#9,919
of 13,137 outputs
Outputs of similar age
#271,148
of 311,244 outputs
Outputs of similar age from Methods in molecular biology
#212
of 268 outputs
Altmetric has tracked 22,958,253 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,137 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,244 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 268 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.