↓ Skip to main content

Natural Killer Cells

Overview of attention for book
Cover of 'Natural Killer Cells'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Natural Killer Cells
  3. Altmetric Badge
    Chapter 2 Natural Killer Cells
  4. Altmetric Badge
    Chapter 3 Assessment of NK Cell Metabolism.
  5. Altmetric Badge
    Chapter 4 Genotyping Single Nucleotide Polymorphisms and Copy Number Variability of the FCGRs Expressed on NK Cells.
  6. Altmetric Badge
    Chapter 5 Measurement of Average Telomere Length in Ex Vivo Expanded Natural Killer Cells by Fluorescence In Situ Hybridization (FISH) and Flow Cytometry.
  7. Altmetric Badge
    Chapter 6 In Vitro Assessment of Human Natural Killer Cell Migration and Invasion.
  8. Altmetric Badge
    Chapter 7 Natural Killer Cells
  9. Altmetric Badge
    Chapter 8 Microwell-Based Live Cell Imaging of NK Cell Dynamics to Assess Heterogeneity in Motility and Cytotoxic Response.
  10. Altmetric Badge
    Chapter 9 Assessment of Natural Killer Cell Cytotoxicity Using Image Cytometry Method.
  11. Altmetric Badge
    Chapter 10 Natural Killer Cells
  12. Altmetric Badge
    Chapter 11 Using NK Cell Lipid Raft Fractionation to Understand the Role of Lipid Rafts in NK Cell Receptor Signaling.
  13. Altmetric Badge
    Chapter 12 Natural Killer Cells
  14. Altmetric Badge
    Chapter 13 The Planar Lipid Bilayer System Serves as a Reductionist Approach for Studying NK Cell Immunological Synapses and Their Functions.
  15. Altmetric Badge
    Chapter 14 Natural Killer Cells
  16. Altmetric Badge
    Chapter 15 Natural Killer Cells
  17. Altmetric Badge
    Chapter 16 Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.
  18. Altmetric Badge
    Chapter 17 Gene Modification of Human Natural Killer Cells Using a Retroviral Vector.
  19. Altmetric Badge
    Chapter 18 Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy.
  20. Altmetric Badge
    Chapter 19 mRNA Transfection to Improve NK Cell Homing to Tumors.
  21. Altmetric Badge
    Chapter 20 Natural Killer Cells
  22. Altmetric Badge
    Chapter 21 Engineering Receptor Expression on Natural Killer Cells Through Trogocytosis.
  23. Altmetric Badge
    Chapter 22 Natural Killer Cells
  24. Altmetric Badge
    Chapter 23 Natural Killer Cells
  25. Altmetric Badge
    Chapter 24 Natural Killer Cells
  26. Altmetric Badge
    Chapter 25 Natural Killer Cells
  27. Altmetric Badge
    Chapter 26 Noninvasive In Vivo Fluorescence Imaging of NK Cells in Preclinical Models of Adoptive Immunotherapy.
  28. Altmetric Badge
    Chapter 27 Natural Killer Cells
  29. Altmetric Badge
    Chapter 28 Generation of BiKEs and TriKEs to Improve NK Cell-Mediated Targeting of Tumor Cells.
  30. Altmetric Badge
    Chapter 29 Natural Killer Cells
Attention for Chapter 15: Natural Killer Cells
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Natural Killer Cells
Chapter number 15
Book title
Natural Killer Cells
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3684-7_15
Pubmed ID
Book ISBNs
978-1-4939-3682-3, 978-1-4939-3684-7
Authors

Somanchi, Srinivas S, Lee, Dean A, Srinivas S. Somanchi Ph.D., Dean A. Lee, Somanchi, Srinivas S., Lee, Dean A., Srinivas S. Somanchi

Editors

Srinivas S. Somanchi

Abstract

Natural killer (NK) cells have gained significant attention for adoptive immunotherapy of cancer due to their well-documented antitumor function. In order to evaluate the therapeutic efficacy of NK cell adoptive immunotherapy in preclinical models with a potential for clinical translation, there is a need for a reliable platform for ex vivo expansion of NK cells. Numerous methods are reported in literature using cytokines and feeder cells to activate and expand human NK cells, and many of these methods are limited by low-fold expansion, cytokine dependency of expanded NK cells or expansion-related senescence. In this chapter, a robust NK cell expansion protocol is described using K562 cell line gene modified to express membrane bound IL21 (K562 mb.IL21). We had previously demonstrated that this platform enables the highest fold expansion of NK cells reported in the literature to date (>47,000-folds in 21 days), and produces highly activated and pure NK cells without signs of senescence, as determined by telomere shortening.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Researcher 7 18%
Student > Bachelor 4 11%
Professor > Associate Professor 2 5%
Student > Master 2 5%
Other 2 5%
Unknown 12 32%
Readers by discipline Count As %
Immunology and Microbiology 6 16%
Agricultural and Biological Sciences 6 16%
Biochemistry, Genetics and Molecular Biology 5 13%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Engineering 2 5%
Other 3 8%
Unknown 14 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2016.
All research outputs
#16,122,040
of 23,923,788 outputs
Outputs from Methods in molecular biology
#5,612
of 13,508 outputs
Outputs of similar age
#237,278
of 399,687 outputs
Outputs of similar age from Methods in molecular biology
#548
of 1,459 outputs
Altmetric has tracked 23,923,788 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,508 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 399,687 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,459 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.