↓ Skip to main content

Plant Transcription Factors

Overview of attention for book
Cover of 'Plant Transcription Factors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Master Regulatory Transcription Factors in Plant Development: A Blooming Perspective
  3. Altmetric Badge
    Chapter 2 Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants
  4. Altmetric Badge
    Chapter 3 The Long-Term “In Natura” Study Sites of Arabidopsis halleri for Plant Transcription and Epigenetic Modification Analyses in Natural Environments
  5. Altmetric Badge
    Chapter 4 Generation of Inducible Transgenic Lines of Arabidopsis Transcription Factors Regulated by MicroRNAs
  6. Altmetric Badge
    Chapter 5 A Specific Knockdown of Transcription Factor Activities in Arabidopsis
  7. Altmetric Badge
    Chapter 6 Using CRISPR/Cas9 System to Introduce Targeted Mutation in Arabidopsis
  8. Altmetric Badge
    Chapter 7 CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha
  9. Altmetric Badge
    Chapter 8 Cell-Type-Specific Promoter Identification Using Enhancer Trap Lines
  10. Altmetric Badge
    Chapter 9 Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells
  11. Altmetric Badge
    Chapter 10 Ectopic Vascular Induction in Arabidopsis Cotyledons for Sequential Analysis of Phloem Differentiation
  12. Altmetric Badge
    Chapter 11 High Impact Gene Discovery: Simple Strand-Specific mRNA Library Construction and Differential Regulatory Analysis Based on Gene Co-Expression Network
  13. Altmetric Badge
    Chapter 12 Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti
  14. Altmetric Badge
    Chapter 13 NanoCAGE-XL: An Approach to High-Confidence Transcription Start Site Sequencing
  15. Altmetric Badge
    Chapter 14 Genome-Wide TSS Identification in Maize
  16. Altmetric Badge
    Chapter 15 Three-Dimensional Multiphoton Imaging of Transcription Factor by ClearSee
  17. Altmetric Badge
    Chapter 16 Two-Color In Situ Hybridization: A Technique for Simultaneous Detection of Transcripts from Different Loci
  18. Altmetric Badge
    Chapter 17 Gene Expression and Transcription Factor Binding Tests Using Mutated-Promoter Reporter Lines
  19. Altmetric Badge
    Chapter 18 Rapid and Quantitative CELD Assay to Measure the Specificity of Transcription Factor-DNA-Binding Interactions and Identify cis-Elements
  20. Altmetric Badge
    Chapter 19 In Situ Proximity Ligation Assay to Detect the Interaction Between Plant Transcription Factors and Other Regulatory Proteins
  21. Altmetric Badge
    Chapter 20 Cell-Free Protein Synthesis of Plant Transcription Factors
  22. Altmetric Badge
    Chapter 21 Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants
  23. Altmetric Badge
    Chapter 22 Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato
  24. Altmetric Badge
    Chapter 23 Genome-Wide Identification of Chromatin Domains Anchored at the Nuclear Periphery in Plants
Attention for Chapter 5: A Specific Knockdown of Transcription Factor Activities in Arabidopsis
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Specific Knockdown of Transcription Factor Activities in Arabidopsis
Chapter number 5
Book title
Plant Transcription Factors
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-8657-6_5
Pubmed ID
Book ISBNs
978-1-4939-8656-9, 978-1-4939-8657-6
Authors

Beibei Zheng, Bennett Thomson, Frank Wellmer, Zheng, Beibei, Thomson, Bennett, Wellmer, Frank

Abstract

Transcription factors are pivotal for the control of development and the response of organisms to changes in the environment. Therefore, a detailed understanding of their functions is of central importance for biology. Over the years, different experimental methods have been developed to study the activities of transcription factors in plants. These methods include perturbation assays, where the activity of a given transcription factor is disrupted and subsequently, the resulting effects are monitored using molecular, genomic, or physiological approaches. Perturbation assays can also be used to distinguish primary roles of transcription factors of interest from secondary effects. Thus, molecular genetic experiments after perturbation can be advantageous or even necessary for the precise understanding of transcription factor function at a certain stage of plant development or in a single tissue or organ type. In this chapter, we describe several commonly used techniques to knock down transcription factor activities and provide detailed information on how those techniques are employed in the model plant Arabidopsis thaliana.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 33%
Researcher 1 17%
Student > Doctoral Student 1 17%
Student > Master 1 17%
Unknown 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 33%
Agricultural and Biological Sciences 2 33%
Immunology and Microbiology 1 17%
Unknown 1 17%