↓ Skip to main content

Cell Cycle Oscillators

Overview of attention for book
Cover of 'Cell Cycle Oscillators'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Cell Cycle Control: A System of Interlinking Oscillators.
  3. Altmetric Badge
    Chapter 2 Cell Cycle Oscillators
  4. Altmetric Badge
    Chapter 3 Role of Computational Modeling in Understanding Cell Cycle Oscillators
  5. Altmetric Badge
    Chapter 4 E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression
  6. Altmetric Badge
    Chapter 5 Cell Synchronization of Mouse Embryonic Fibroblasts
  7. Altmetric Badge
    Chapter 6 Cell Cycle Oscillators
  8. Altmetric Badge
    Chapter 7 Elutriation for Cell Cycle Synchronization in Fission Yeast.
  9. Altmetric Badge
    Chapter 8 Spatiotemporal Investigation of Phosphorylation Events During Cell Cycle Progression
  10. Altmetric Badge
    Chapter 9 Cell Cycle Dynamics of Proteins and Post-translational Modifications Using Quantitative Immunofluorescence
  11. Altmetric Badge
    Chapter 10 Building a Synthetic Transcriptional Oscillator.
  12. Altmetric Badge
    Chapter 11 Cell Cycle Oscillators
  13. Altmetric Badge
    Chapter 12 A Computational Method for Identifying Yeast Cell Cycle Transcription Factors.
  14. Altmetric Badge
    Chapter 13 Measuring Activity and Specificity of Protein Phosphatases
  15. Altmetric Badge
    Chapter 14 Combining the Optimized Yeast Cytosine Deaminase Protein Fragment Complementation Assay and an In Vitro Cdk1 Targeting Assay to Study the Regulation of the γ-Tubulin Complex.
  16. Altmetric Badge
    Chapter 15 Cell Cycle Synchronization Using a Microfluidic Synchronizer for Fission Yeast Cells.
  17. Altmetric Badge
    Chapter 16 Detection of Protein-Protein Interactions in Tobacco BY-2 Cells Using Bimolecular Fluorescence Complementation.
  18. Altmetric Badge
    Chapter 17 Tracking the Cyclin B1-GFP Sensor to Profile the Pattern of Mitosis Versus Mitotic Bypass
  19. Altmetric Badge
    Chapter 18 Cell Cycle Oscillators
  20. Altmetric Badge
    Chapter 19 Using the Fly-FUCCI System for the Live Analysis of Cell Cycle Dynamics in Cultured Drosophila Cells.
  21. Altmetric Badge
    Chapter 20 Imaging Cell Cycle Phases and Transitions of Living Cells from Yeast to Woman.
  22. Altmetric Badge
    Chapter 21 Measurement of Cdk1/Cyclin B Kinase Activity by Specific Antibodies and Western Blotting
  23. Altmetric Badge
    Chapter 22 Cell Cycle Oscillators
Attention for Chapter 13: Measuring Activity and Specificity of Protein Phosphatases
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Measuring Activity and Specificity of Protein Phosphatases
Chapter number 13
Book title
Cell Cycle Oscillators
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-2957-3_13
Pubmed ID
Book ISBNs
978-1-4939-2956-6, 978-1-4939-2957-3
Authors

Brendan L. Powers, Michael Melesse, Christie L. Eissler, Harry Charbonneau, Mark C. Hall

Abstract

Reversible protein phosphorylation plays essential roles in coordinating cell division and many other biological processes. Cell cycle regulation by opposing kinase and protein phosphatase activities is often complex and major challenges exist in identifying the direct substrates of these enzymes and the specific sites at which they act. While cell cycle kinases are known to exhibit strict substrate specificities important for coordinating the complex events of cell division, phosphatases have only recently been recognized to exert similarly precise regulatory control over cell cycle events through timely dephosphorylation of specific substrates. The molecular determinants for substrate recognition by many phosphatases that function in cell division are still poorly delineated. To understand phosphatase specificity, it is critical to employ methods that monitor the dephosphorylation of individual phosphorylation sites on physiologically relevant substrates. Here, using the cell cycle phosphatase Cdc14 as an example, we describe two methods for studying phosphatase specificity, one using synthetic phosphopeptide substrates and the other using intact phosphoprotein substrates. These methods are useful for targeted characterization of small substrate sets and are also adaptable to large-scale applications for global specificity studies.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 20%
Unknown 4 80%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 40%
Unspecified 1 20%
Professor > Associate Professor 1 20%
Student > Ph. D. Student 1 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 60%
Computer Science 1 20%
Unspecified 1 20%