↓ Skip to main content

Bacterial Regulatory RNA

Overview of attention for book
Cover of 'Bacterial Regulatory RNA'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Workflow for a Computational Analysis of an sRNA Candidate in Bacteria
  3. Altmetric Badge
    Chapter 2 Guidelines for Inferring and Characterizing a Family of Bacterial trans-Acting Small Noncoding RNAs
  4. Altmetric Badge
    Chapter 3 Bioinformatic Approach for Prediction of CsrA/RsmA-Regulating Small RNAs in Bacteria
  5. Altmetric Badge
    Chapter 4 Host-Pathogen Transcriptomics by Dual RNA-Seq
  6. Altmetric Badge
    Chapter 5 Identification of New Bacterial Small RNA Targets Using MS2 Affinity Purification Coupled to RNA Sequencing
  7. Altmetric Badge
    Chapter 6 Assessment of External Guide Sequences’ (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules
  8. Altmetric Badge
    Chapter 7 Evaluating the Effect of Small RNAs and Associated Chaperones on Rho-Dependent Termination of Transcription In Vitro
  9. Altmetric Badge
    Chapter 8 Mapping Changes in Cell Surface Protein Expression Through Selective Labeling of Live Cells
  10. Altmetric Badge
    Chapter 9 Fluorescence-Based Methods for Characterizing RNA Interactions In Vivo
  11. Altmetric Badge
    Chapter 10 Mutational Analysis of sRNA–mRNA Base Pairing by Electrophoretic Mobility Shift Assay
  12. Altmetric Badge
    Chapter 11 An Integrated Cell-Free Assay to Study Translation Regulation by Small Bacterial Noncoding RNAs
  13. Altmetric Badge
    Chapter 12 Quantitative Super-Resolution Imaging of Small RNAs in Bacterial Cells
  14. Altmetric Badge
    Chapter 13 Extraction and Analysis of RNA Isolated from Pure Bacteria-Derived Outer Membrane Vesicles
  15. Altmetric Badge
    Chapter 14 Absolute Regulatory Small Noncoding RNA Concentration and Decay Rates Measurements in Escherichia coli
  16. Altmetric Badge
    Chapter 15 High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC)
  17. Altmetric Badge
    Chapter 16 Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly
  18. Altmetric Badge
    Chapter 17 Single-Molecule FRET Assay to Observe the Activity of Proteins Involved in RNA/RNA Annealing
  19. Altmetric Badge
    Chapter 18 Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro
  20. Altmetric Badge
    Chapter 19 Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells
  21. Altmetric Badge
    Chapter 20 Identification of Small RNA–Protein Partners in Plant Symbiotic Bacteria
  22. Altmetric Badge
    Chapter 21 A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs
Attention for Chapter 21: A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs
Chapter number 21
Book title
Bacterial Regulatory RNA
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7634-8_21
Pubmed ID
Book ISBNs
978-1-4939-7633-1, 978-1-4939-7634-8
Authors

Samuel D. Stimple, Ashwin Lahiry, Joseph E. Taris, David W. Wood, Richard A. Lease, Stimple, Samuel D., Lahiry, Ashwin, Taris, Joseph E., Wood, David W., Lease, Richard A.

Abstract

RNA biology and RNA engineering are subjects of growing interest due to recent advances in our understanding of the diverse cellular functions of RNAs, including their roles as genetic regulators. The noncoding small RNAs (sRNAs) of bacteria are a fundamental basis of regulatory control that can regulate gene expression via antisense base-pairing to one or more target mRNAs. The sRNAs can be customized to generate a range of mRNA translation rates and stabilities. The sRNAs can be applied as a platform for metabolic engineering, to control expression of genes of interest by following relatively straightforward design rules (Kushwaha et al., ACS Synth Biol 5:795-809, 2016). However, the ab initio design of functional sRNAs to precise specifications of gene control is not yet possible. Consequently, there is a need for tools to rapidly profile uncharacterized sRNAs in vivo, to screen sRNAs against "new/novel" targets, and (in the case of metabolic engineering) to develop engineered sRNAs for regulatory function against multiple desired mRNA targets. To address this unmet need, we previously constructed a modular genetic system for assaying sRNA activity in vivo against specifiable mRNA sequences, using microtiter plate assays for high-throughput productivity. This sRNA design platform consists of three modular plasmids: one plasmid contains an inducible sRNA and the RNA chaperone Hfq; the second contains an inducible fluorescent reporter protein and a LacY mutant transporter protein for inducer molecules; and the third plasmid contains a second inducible fluorescent reporter protein. The second reporter gene makes it possible to screen for sRNA regulators that have activity against multiple mRNAs. We describe the protocol for engineering sRNAs with novel regulatory activity using this system. This sRNA prototyping regimen could also be employed for validating predicted mRNA targets of uncharacterized, naturally occurring sRNAs or for testing hypotheses about the predicted roles of genes, including essential genes, in cellular metabolism and other processes, by using customized antisense sRNAs to knock down or tune down gene expression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 22%
Student > Bachelor 2 22%
Student > Doctoral Student 1 11%
Student > Master 1 11%
Researcher 1 11%
Other 0 0%
Unknown 2 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 44%
Business, Management and Accounting 1 11%
Agricultural and Biological Sciences 1 11%
Engineering 1 11%
Unknown 2 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 October 2023.
All research outputs
#16,734,975
of 24,614,554 outputs
Outputs from Methods in molecular biology
#5,787
of 13,846 outputs
Outputs of similar age
#280,894
of 452,599 outputs
Outputs of similar age from Methods in molecular biology
#593
of 1,485 outputs
Altmetric has tracked 24,614,554 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,846 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 452,599 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,485 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.