↓ Skip to main content

Cellular and Molecular Toxicology of Nanoparticles

Overview of attention for book
Cover of 'Cellular and Molecular Toxicology of Nanoparticles'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Toxicity Assessment in the Nanoparticle Era
  3. Altmetric Badge
    Chapter 2 Mechanisms of Uptake and Translocation of Nanomaterials in the Lung
  4. Altmetric Badge
    Chapter 3 Transmucosal Nanoparticles: Toxicological Overview
  5. Altmetric Badge
    Chapter 4 The Toxicity of Nanoparticles to Human Endothelial Cells
  6. Altmetric Badge
    Chapter 5 The Role of Autophagy in Nanoparticles-Induced Toxicity and Its Related Cellular and Molecular Mechanisms
  7. Altmetric Badge
    Chapter 6 Nanoparticles-Caused Oxidative Imbalance
  8. Altmetric Badge
    Chapter 7 Toxicity of Metal Oxide Nanoparticles
  9. Altmetric Badge
    Chapter 8 Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions
  10. Altmetric Badge
    Chapter 9 Toxicogenomics: A New Paradigm for Nanotoxicity Evaluation
  11. Altmetric Badge
    Chapter 10 Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells
  12. Altmetric Badge
    Chapter 11 Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona
  13. Altmetric Badge
    Chapter 12 Cellular and Molecular Toxicity of Iron Oxide Nanoparticles
  14. Altmetric Badge
    Chapter 13 Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated
  15. Altmetric Badge
    Chapter 14 Mechanisms Underlying Neurotoxicity of Silver Nanoparticles
  16. Altmetric Badge
    Chapter 15 Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin
  17. Altmetric Badge
    Chapter 16 Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms
  18. Altmetric Badge
    Chapter 17 Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates
  19. Altmetric Badge
    Chapter 18 A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes
  20. Altmetric Badge
    Chapter 19 Using of Quantum Dots in Biology and Medicine
Attention for Chapter 16: Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms
Chapter number 16
Book title
Cellular and Molecular Toxicology of Nanoparticles
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-72041-8_16
Pubmed ID
Book ISBNs
978-3-31-972040-1, 978-3-31-972041-8
Authors

Mohd Ashraf Rather, Irfan Ahmad Bhat, Niti Sharma, Rupam Sharma, Rather, Mohd Ashraf, Bhat, Irfan Ahmad, Sharma, Niti, Sharma, Rupam

Abstract

The increasing application of nanomaterials both in commercial and industrial products has led their accumulation in the aquatic ecosystem. The rapid development and large scale production of nanomaterials in the last few decades have stimulated concerns regarding their potential environmental health risks on aquatic biota. Inorganic nanoparticles, due to their unique properties and associated material characteristics resulted in toxicity of these nanomaterials in aquatic organisms. Understanding their novel properties at nanoscale has established to be a significant aspect of their toxicity. Unique properties such as size, surface area, surface coating, surface charge, aggregation of particles and dissolution may affect cellular uptake, molecular response, in vivo reactivity and delivery across tissues of living organism. Already lot of research in the past three or four decades within the nano-ecotoxicology field had been carried out. However, there is not any standard technique yet to assess toxicity of nanoparticles (NPs) on different biological systems such as reproductive, respiratory, nervous, gastrointestinal systems, and development stages of aquatic organisms. Specific toxicological techniques and quantification of nanoparticles are vital to establish regulations to control their impact on the aquatic organism and their release in the aquatic environment. The main aim of this chapter is to critically evaluate the current literature on the toxicity of nanomaterials on aquatic organism.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 17%
Student > Master 3 13%
Student > Bachelor 3 13%
Professor 2 8%
Professor > Associate Professor 2 8%
Other 6 25%
Unknown 4 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 29%
Engineering 2 8%
Chemistry 2 8%
Unspecified 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 6 25%
Unknown 5 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2018.
All research outputs
#20,466,701
of 23,025,074 outputs
Outputs from Advances in experimental medicine and biology
#3,988
of 4,966 outputs
Outputs of similar age
#378,203
of 442,364 outputs
Outputs of similar age from Advances in experimental medicine and biology
#197
of 237 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,966 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,364 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.