↓ Skip to main content

Cellular and Molecular Toxicology of Nanoparticles

Overview of attention for book
Cover of 'Cellular and Molecular Toxicology of Nanoparticles'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Toxicity Assessment in the Nanoparticle Era
  3. Altmetric Badge
    Chapter 2 Mechanisms of Uptake and Translocation of Nanomaterials in the Lung
  4. Altmetric Badge
    Chapter 3 Transmucosal Nanoparticles: Toxicological Overview
  5. Altmetric Badge
    Chapter 4 The Toxicity of Nanoparticles to Human Endothelial Cells
  6. Altmetric Badge
    Chapter 5 The Role of Autophagy in Nanoparticles-Induced Toxicity and Its Related Cellular and Molecular Mechanisms
  7. Altmetric Badge
    Chapter 6 Nanoparticles-Caused Oxidative Imbalance
  8. Altmetric Badge
    Chapter 7 Toxicity of Metal Oxide Nanoparticles
  9. Altmetric Badge
    Chapter 8 Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions
  10. Altmetric Badge
    Chapter 9 Toxicogenomics: A New Paradigm for Nanotoxicity Evaluation
  11. Altmetric Badge
    Chapter 10 Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells
  12. Altmetric Badge
    Chapter 11 Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona
  13. Altmetric Badge
    Chapter 12 Cellular and Molecular Toxicity of Iron Oxide Nanoparticles
  14. Altmetric Badge
    Chapter 13 Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated
  15. Altmetric Badge
    Chapter 14 Mechanisms Underlying Neurotoxicity of Silver Nanoparticles
  16. Altmetric Badge
    Chapter 15 Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin
  17. Altmetric Badge
    Chapter 16 Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms
  18. Altmetric Badge
    Chapter 17 Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates
  19. Altmetric Badge
    Chapter 18 A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes
  20. Altmetric Badge
    Chapter 19 Using of Quantum Dots in Biology and Medicine
Attention for Chapter 8: Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions
Altmetric Badge

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions
Chapter number 8
Book title
Cellular and Molecular Toxicology of Nanoparticles
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-72041-8_8
Pubmed ID
Book ISBNs
978-3-31-972040-1, 978-3-31-972041-8
Authors

Henriqueta Louro

Abstract

The manufactured nanomaterials (NMs) have specific physicochemical properties that confer unique mechanical, optical, electrical and magnetic characteristics that are beneficial for biomedical and industrial applications. However, recent studies have suggested that such specific physicochemical properties of the NMs may define nano-bio interactions thereby determining their toxic potential.One of the major concerns about NMs is the potential to induce cancer, suggested by some experimental studies, as seen for titanium dioxide nanomaterials or carbon nanotubes. To analyze in a short term the carcinogenic properties of a compound, genotoxicity assays in mammalian cell lines or animal models are frequently used. However, the investigation of the genotoxic properties of NMs has been inconclusive, up to date, since divergent results have been reported throughout the literature. While trying to understand how the NMs' characteristics may encompass increased toxicological effects that harbor uncertainties for public health, the use of correlation analysis highlights some physicochemical properties that influence the genotoxic potential of these NM.In this chapter, it is hypothesized that the different genotoxicity observed in closely related NMs may be due to subtle differences in their physicochemical characteristics. The present work provides an overview of the studies exploring the correlation between physicochemical properties of nanomaterials and their genotoxic effects in human cells, with focus on the toxicity of two groups of NMs, titanium dioxide nanomaterials and multiwalled-carbon nanotubes. It is suggested that, for tackling NMs' uncertainties, the in-depth investigation of the nano-bio interactions must be foreseen, where in vitro research must be integrated with in vivo and biomonitoring approaches, to cope with the complex dynamic behaviour of nanoscale materials.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 24%
Student > Ph. D. Student 6 12%
Researcher 5 10%
Other 4 8%
Student > Bachelor 3 6%
Other 5 10%
Unknown 14 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 24%
Medicine and Dentistry 4 8%
Agricultural and Biological Sciences 3 6%
Nursing and Health Professions 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 7 14%
Unknown 19 39%