↓ Skip to main content

Cellular and Molecular Toxicology of Nanoparticles

Overview of attention for book
Cover of 'Cellular and Molecular Toxicology of Nanoparticles'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Toxicity Assessment in the Nanoparticle Era
  3. Altmetric Badge
    Chapter 2 Mechanisms of Uptake and Translocation of Nanomaterials in the Lung
  4. Altmetric Badge
    Chapter 3 Transmucosal Nanoparticles: Toxicological Overview
  5. Altmetric Badge
    Chapter 4 The Toxicity of Nanoparticles to Human Endothelial Cells
  6. Altmetric Badge
    Chapter 5 The Role of Autophagy in Nanoparticles-Induced Toxicity and Its Related Cellular and Molecular Mechanisms
  7. Altmetric Badge
    Chapter 6 Nanoparticles-Caused Oxidative Imbalance
  8. Altmetric Badge
    Chapter 7 Toxicity of Metal Oxide Nanoparticles
  9. Altmetric Badge
    Chapter 8 Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions
  10. Altmetric Badge
    Chapter 9 Toxicogenomics: A New Paradigm for Nanotoxicity Evaluation
  11. Altmetric Badge
    Chapter 10 Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells
  12. Altmetric Badge
    Chapter 11 Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona
  13. Altmetric Badge
    Chapter 12 Cellular and Molecular Toxicity of Iron Oxide Nanoparticles
  14. Altmetric Badge
    Chapter 13 Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated
  15. Altmetric Badge
    Chapter 14 Mechanisms Underlying Neurotoxicity of Silver Nanoparticles
  16. Altmetric Badge
    Chapter 15 Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin
  17. Altmetric Badge
    Chapter 16 Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms
  18. Altmetric Badge
    Chapter 17 Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates
  19. Altmetric Badge
    Chapter 18 A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes
  20. Altmetric Badge
    Chapter 19 Using of Quantum Dots in Biology and Medicine
Attention for Chapter 13: Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated
Altmetric Badge

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated
Chapter number 13
Book title
Cellular and Molecular Toxicology of Nanoparticles
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-72041-8_13
Pubmed ID
Book ISBNs
978-3-31-972040-1, 978-3-31-972041-8
Authors

Tiago Alves Jorge de Souza, Thiago Lopes Rocha, Leonardo Pereira Franchi

Abstract

This chapter will present an original effort to summarize the relevant data about the cyto-genotoxicity induced by cerium dioxide nanoparticles (nanoceria) in physiologically (in vivo and in vitro) relevant models. In this way, this chapter should be extremely useful to everyone who wants to plan their research and publishing their results. Massive application of nanoceria at different fields is increasing year after year, and it is urgent to address and discuss their use and its safety-related issues. Specifically, the nanoceria are being designed for nanomedicine, cosmetics, polishing materials and additives for automotive fuels. Their unique properties include the ability to absorb UV radiation, antioxidant potential and the rapid exchange of valence between Ce4+and Ce3+ions associated to oxygen storage. In this chapter, the state of the art regarding the physicochemical properties of nanoceria, nanogenotoxicity detected by in vitro and in vivo systems and the general aspects in the cyto-genotoxic mechanism of nanoceria are summarized. The cyto-genotoxicity will be discussed in terms of evaluations by Comet assay, Micronucleus test, DNA damage response and oxidative stress detected in cell culture systems and in vivo test. We also described the dose dependent cyto-genotoxic effects of nanoceria based on their physical-chemical nature. Paradoxically, these particles have been characterized as either pro-oxidant or anti-oxidant in dependence of microenvironment and physiological conditions such as pH. Finally, this chapter will contribute to point out aspects of the development of new in vitro and in vivo methodologies to detect cyto-genotoxic effects of the nanoceria.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Bachelor 3 13%
Student > Master 3 13%
Researcher 3 13%
Student > Postgraduate 2 8%
Other 3 13%
Unknown 6 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 17%
Chemistry 3 13%
Neuroscience 2 8%
Medicine and Dentistry 2 8%
Agricultural and Biological Sciences 1 4%
Other 5 21%
Unknown 7 29%