↓ Skip to main content

Photorespiration

Overview of attention for book
Cover of 'Photorespiration'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Estimation of Photorespiratory Fluxes by Gas Exchange
  3. Altmetric Badge
    Chapter 2 Measurement of Transcripts Associated with Photorespiration and Related Redox Signaling
  4. Altmetric Badge
    Chapter 3 Measurement of Enzyme Activities
  5. Altmetric Badge
    Chapter 4 In Vitro Alkylation Methods for Assessing the Protein Redox State
  6. Altmetric Badge
    Chapter 5 Dimethyl-Labeling-Based Quantification of the Lysine Acetylome and Proteome of Plants
  7. Altmetric Badge
    Chapter 6 In Vitro Analysis of Metabolite Transport Proteins
  8. Altmetric Badge
    Chapter 7 Quantification of Photorespiratory Intermediates by Mass Spectrometry-Based Approaches
  9. Altmetric Badge
    Chapter 8 Targeted Isolation and Characterization of T-DNA Mutants Defective in Photorespiration
  10. Altmetric Badge
    Chapter 9 Exploiting Natural Variation to Discover Candidate Genes Involved in Photosynthesis-Related Traits
  11. Altmetric Badge
    Chapter 10 Metabolic Engineering of Photorespiration
  12. Altmetric Badge
    Chapter 11 13CO2 Labeling and Mass Spectral Analysis of Photorespiration
  13. Altmetric Badge
    Chapter 12 Isotopically Nonstationary Metabolic Flux Analysis (INST-MFA) of Photosynthesis and Photorespiration in Plants
  14. Altmetric Badge
    Chapter 13 Genome-Scale Modeling of Photorespiratory Pathway Manipulation
  15. Altmetric Badge
    Chapter 14 Kinetic Modeling of Photorespiration
  16. Altmetric Badge
    Chapter 15 Investigating the Role of the Photorespiratory Pathway in Non-photosynthetic Tissues
  17. Altmetric Badge
    Chapter 16 Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana
  18. Altmetric Badge
    Chapter 17 Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration
Attention for Chapter 4: In Vitro Alkylation Methods for Assessing the Protein Redox State
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Vitro Alkylation Methods for Assessing the Protein Redox State
Chapter number 4
Book title
Photorespiration
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7225-8_4
Pubmed ID
Book ISBNs
978-1-4939-7224-1, 978-1-4939-7225-8
Authors

Flavien Zannini, Jérémy Couturier, Olivier Keech, Nicolas Rouhier

Abstract

Cysteines are important residues for protein structure, function, and regulation. Owing to their modified reactivity, some cysteines can undergo very diverse redox posttranslational modifications, including the reversible formation of disulfide bonds, a widespread protein regulatory process as well exemplified in plant chloroplasts for Calvin-Benson cycle enzymes. Both core- and peripheral-photorespiratory enzymes possess conserved cysteines, some of which have been identified as being subject to oxidative modifications. This is not surprising considering their presence in subcellular compartments where the production of reactive species can be important. However, in most cases, the types of modifications and their biochemical effect on protein activity have not been validated, meaning that the possible impact of these modifications in a complex physiological context, such as photorespiration, remains obscure.We here describe a detailed set of protocols for alkylation methods that have been used so far to (1) study the protein cysteine redox state either in vitro by submitting purified recombinant proteins to reducing/oxidation treatments or in vivo by western blots on protein extracts from plants subject to environmental constraints, and its dependency on the two major reducing systems in the cell, i.e., the thioredoxin and glutathione/glutaredoxin systems, and (2) determine two key redox parameters, i.e., the cysteine pK a and the redox midpoint potential.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 3 27%
Student > Ph. D. Student 2 18%
Student > Doctoral Student 1 9%
Student > Master 1 9%
Unknown 4 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 36%
Chemistry 2 18%
Computer Science 1 9%
Medicine and Dentistry 1 9%
Unknown 3 27%