↓ Skip to main content

Fast Detection of DNA Damage

Overview of attention for book
Cover of 'Fast Detection of DNA Damage'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Express FRET Labeling and Analysis of Phagocytic Clearance
  3. Altmetric Badge
    Chapter 2 Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations
  4. Altmetric Badge
    Chapter 3 Ultrasound Imaging of DNA-Damage Effects in Live Cultured Cells and in Brain Tissue
  5. Altmetric Badge
    Chapter 4 Ultrasound Imaging of Apoptosis: Spectroscopic Detection of DNA-Damage Effects In Vivo
  6. Altmetric Badge
    Chapter 5 Fluorochrome-Labeled Inhibitors of Caspases: Expedient In Vitro and In Vivo Markers of Apoptotic Cells for Rapid Cytometric Analysis
  7. Altmetric Badge
    Chapter 6 The Fast-Halo Assay for the Detection of DNA Damage
  8. Altmetric Badge
    Chapter 7 Rapid Detection of Bacterial Susceptibility or Resistance to Quinolones
  9. Altmetric Badge
    Chapter 8 Rapid Detection of Apoptosis in Cultured Mammalian Cells
  10. Altmetric Badge
    Chapter 9 Quick Detection of DNase II-Type Breaks in Formalin-Fixed Tissue Sections
  11. Altmetric Badge
    Chapter 10 Express γ-H2AX Immunocytochemical Detection of DNA Damage
  12. Altmetric Badge
    Chapter 11 Rapid Detection of γ-H2AX by Flow Cytometry in Cultured Mammalian Cells
  13. Altmetric Badge
    Chapter 12 Rapid Detection of DNA Strand Breaks in Apoptotic Cells by Flow- and Image-Cytometry
  14. Altmetric Badge
    Chapter 13 Fast Micromethod: Determination of DNA Integrity in Cell Suspensions and in Solid Tissues
  15. Altmetric Badge
    Chapter 14 Quantification of DNA Damage and Repair in Mitochondrial, Nuclear, and Bacterial Genomes by Real-Time PCR
  16. Altmetric Badge
    Chapter 15 Zebra Tail Amplification: Accelerated Detection of Apoptotic Blunt-Ended DNA Breaks by In Situ Ligation
  17. Altmetric Badge
    Chapter 16 Twelve-Gel Comet Assay Format for Quick Examination of DNA Damage and Repair
  18. Altmetric Badge
    Chapter 17 Immunofluorescence Analysis of γ-H2AX Foci in Mammalian Fibroblasts at Different Phases of the Cell Cycle
  19. Altmetric Badge
    Chapter 18 RAPD-PCR as a Rapid Approach for the Evaluation of Genotoxin-Induced Damage to Bacterial DNA
  20. Altmetric Badge
    Chapter 19 Rapid Detection of γ-H2Av Foci in Ex Vivo MMS-Treated Drosophila Imaginal Discs
Attention for Chapter 4: Ultrasound Imaging of Apoptosis: Spectroscopic Detection of DNA-Damage Effects In Vivo
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Ultrasound Imaging of Apoptosis: Spectroscopic Detection of DNA-Damage Effects In Vivo
Chapter number 4
Book title
Fast Detection of DNA Damage
Published in
Methods in molecular biology, July 2017
DOI 10.1007/978-1-4939-7187-9_4
Pubmed ID
Book ISBNs
978-1-4939-7185-5, 978-1-4939-7187-9
Authors

Hadi Tadayyon, Mehrdad J. Gangeh, Roxana Vlad, Michael C. Kolios, Gregory J. Czarnota

Abstract

In this chapter, we describe two new methodologies: (1) application of high-frequency ultrasound spectroscopy for in vivo detection of cancer cell death in small animal models, and (2) extension of ultrasound spectroscopy to the lower frequency range (i.e., 1-10 MHz range) for the detection of cell death in vivo in preclinical and clinical settings. Experiments using tumor xenografts in mice and cancer treatments based on chemotherapy are described. Finally, we describe how one can detect cancer response to treatment in patients noninvasively early (within 1 week of treatment initiation) using low-frequency ultrasound spectroscopic imaging and advanced machine learning techniques. Color-coded images of ultrasound spectroscopic parameters, or parametric images, permit the delineation of areas of dead cells versus viable cells using high ultrasound frequencies, and the delineation of areas of therapy response in patient tumors using clinically relevant ultrasound frequencies. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death. A noninvasive and express method of cancer response detection using ultrasound spectroscopy provides a framework for personalized medicine with regards to the treatment planning of refractory patients resulting in substantial improvements in patient survival.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 30%
Student > Bachelor 3 13%
Researcher 3 13%
Student > Ph. D. Student 2 9%
Student > Doctoral Student 1 4%
Other 4 17%
Unknown 3 13%
Readers by discipline Count As %
Medicine and Dentistry 6 26%
Engineering 3 13%
Computer Science 3 13%
Biochemistry, Genetics and Molecular Biology 1 4%
Mathematics 1 4%
Other 3 13%
Unknown 6 26%