↓ Skip to main content

Fast Detection of DNA Damage

Overview of attention for book
Cover of 'Fast Detection of DNA Damage'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Express FRET Labeling and Analysis of Phagocytic Clearance
  3. Altmetric Badge
    Chapter 2 Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations
  4. Altmetric Badge
    Chapter 3 Ultrasound Imaging of DNA-Damage Effects in Live Cultured Cells and in Brain Tissue
  5. Altmetric Badge
    Chapter 4 Ultrasound Imaging of Apoptosis: Spectroscopic Detection of DNA-Damage Effects In Vivo
  6. Altmetric Badge
    Chapter 5 Fluorochrome-Labeled Inhibitors of Caspases: Expedient In Vitro and In Vivo Markers of Apoptotic Cells for Rapid Cytometric Analysis
  7. Altmetric Badge
    Chapter 6 The Fast-Halo Assay for the Detection of DNA Damage
  8. Altmetric Badge
    Chapter 7 Rapid Detection of Bacterial Susceptibility or Resistance to Quinolones
  9. Altmetric Badge
    Chapter 8 Rapid Detection of Apoptosis in Cultured Mammalian Cells
  10. Altmetric Badge
    Chapter 9 Quick Detection of DNase II-Type Breaks in Formalin-Fixed Tissue Sections
  11. Altmetric Badge
    Chapter 10 Express γ-H2AX Immunocytochemical Detection of DNA Damage
  12. Altmetric Badge
    Chapter 11 Rapid Detection of γ-H2AX by Flow Cytometry in Cultured Mammalian Cells
  13. Altmetric Badge
    Chapter 12 Rapid Detection of DNA Strand Breaks in Apoptotic Cells by Flow- and Image-Cytometry
  14. Altmetric Badge
    Chapter 13 Fast Micromethod: Determination of DNA Integrity in Cell Suspensions and in Solid Tissues
  15. Altmetric Badge
    Chapter 14 Quantification of DNA Damage and Repair in Mitochondrial, Nuclear, and Bacterial Genomes by Real-Time PCR
  16. Altmetric Badge
    Chapter 15 Zebra Tail Amplification: Accelerated Detection of Apoptotic Blunt-Ended DNA Breaks by In Situ Ligation
  17. Altmetric Badge
    Chapter 16 Twelve-Gel Comet Assay Format for Quick Examination of DNA Damage and Repair
  18. Altmetric Badge
    Chapter 17 Immunofluorescence Analysis of γ-H2AX Foci in Mammalian Fibroblasts at Different Phases of the Cell Cycle
  19. Altmetric Badge
    Chapter 18 RAPD-PCR as a Rapid Approach for the Evaluation of Genotoxin-Induced Damage to Bacterial DNA
  20. Altmetric Badge
    Chapter 19 Rapid Detection of γ-H2Av Foci in Ex Vivo MMS-Treated Drosophila Imaginal Discs
Attention for Chapter 5: Fluorochrome-Labeled Inhibitors of Caspases: Expedient In Vitro and In Vivo Markers of Apoptotic Cells for Rapid Cytometric Analysis
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fluorochrome-Labeled Inhibitors of Caspases: Expedient In Vitro and In Vivo Markers of Apoptotic Cells for Rapid Cytometric Analysis
Chapter number 5
Book title
Methods in Molecular Biology
Published in
Methods in molecular biology, July 2017
DOI 10.1007/978-1-4939-7187-9_5
Pubmed ID
Book ISBNs
978-1-4939-7185-5, 978-1-4939-7187-9
Authors

Darzynkiewicz, Zbigniew, Zhao, Hong, Dorota Halicka, H., Pozarowski, Piotr, Lee, Brian, Zbigniew Darzynkiewicz, Hong Zhao, H. Dorota Halicka, Piotr Pozarowski, Brian Lee

Abstract

Activation of caspases is a characteristic event of apoptosis. Various cytometric methods distinguishing this event have been developed to serve as specific apoptotic markers for the assessment of apoptotic frequency within different cell populations. The method described in this chapter utilizes fluorochrome labeled inhibitors of caspases (FLICA) and is applicable to fluorescence microscopy, flow- and imaging-cytometry as well as to confocal imaging. Cell-permeant FLICA reagents tagged with carboxyfluorescein or sulforhodamine, when applied to live cells in vitro or in vivo, exclusively label the cells that are undergoing apoptosis. The FLICA labeling methodology is rapid, simple, robust, and can be combined with other markers of cell death for multiplexed analysis. Examples are presented on FLICA use in combination with a vital stain (propidium iodide), detection of the loss of mitochondrial electrochemical potential, and exposure of phosphatidylserine on the outer surface of plasma cell membrane using Annexin V fluorochrome conjugates. FLICA staining followed by cell fixation and stoichiometric staining of cellular DNA demonstrate that FLICA binding can be correlated with the concurrent analysis of DNA ploidy, cell cycle phase, DNA fragmentation, and other apoptotic events whose detection requires cell permeabilization. The "time window" for the detection of apoptosis with FLICA is wider compared to the Annexin V binding, making FLICA a preferable marker for the detection of early phase apoptosis and therefore more accurate for quantification of apoptotic cells. Unlike many other biomarkers of apoptotic cells, FLICAs can be used to detect apoptosis ex vivo and in vivo in different tissues.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 14%
Student > Bachelor 1 14%
Student > Postgraduate 1 14%
Student > Doctoral Student 1 14%
Unknown 3 43%
Readers by discipline Count As %
Medicine and Dentistry 4 57%
Unknown 3 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2018.
All research outputs
#14,945,861
of 22,988,380 outputs
Outputs from Methods in molecular biology
#4,722
of 13,150 outputs
Outputs of similar age
#185,752
of 312,216 outputs
Outputs of similar age from Methods in molecular biology
#76
of 274 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,150 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,216 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 274 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.