↓ Skip to main content

Neuroepigenomics in Aging and Disease

Overview of attention for book
Cover of 'Neuroepigenomics in Aging and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome
  3. Altmetric Badge
    Chapter 2 The Role of Noncoding RNAs in Neurodevelopmental Disorders: The Case of Rett Syndrome
  4. Altmetric Badge
    Chapter 3 Rubinstein-Taybi Syndrome and Epigenetic Alterations
  5. Altmetric Badge
    Chapter 4 Epigenetics of Autism Spectrum Disorder
  6. Altmetric Badge
    Chapter 5 Eating Disorders and Epigenetics
  7. Altmetric Badge
    Chapter 6 Drug Addiction and DNA Modifications
  8. Altmetric Badge
    Chapter 7 Drug Addiction and Histone Code Alterations
  9. Altmetric Badge
    Chapter 8 Anxiety and Epigenetics
  10. Altmetric Badge
    Chapter 9 Histone Modifications in Major Depressive Disorder and Related Rodent Models
  11. Altmetric Badge
    Chapter 10 DNA Methylation in Major Depressive Disorder
  12. Altmetric Badge
    Chapter 11 Noncoding RNAs in Depression
  13. Altmetric Badge
    Chapter 12 DNA Methylation in Schizophrenia
  14. Altmetric Badge
    Chapter 13 Histone Posttranslational Modifications in Schizophrenia
  15. Altmetric Badge
    Chapter 14 Epigenetic Mechanisms of Gene Regulation in Amyotrophic Lateral Sclerosis
  16. Altmetric Badge
    Chapter 15 Epigenetics of Huntington’s Disease
  17. Altmetric Badge
    Chapter 16 DNA Modifications and Alzheimer’s Disease
  18. Altmetric Badge
    Chapter 17 Alzheimer’s Disease and Histone Code Alterations
  19. Altmetric Badge
    Chapter 18 Alzheimer’s Disease and ncRNAs
  20. Altmetric Badge
    Chapter 19 Epigenetics in Parkinson’s Disease
  21. Altmetric Badge
    Chapter 20 Single-Cell Genomics Unravels Brain Cell-Type Complexity
  22. Altmetric Badge
    Chapter 21 Epigenome Editing in the Brain
  23. Altmetric Badge
    Chapter 22 Techniques for Single-Molecule mRNA Imaging in Living Cells
  24. Altmetric Badge
    Chapter 23 Stem Cell Technology for (Epi)genetic Brain Disorders
  25. Altmetric Badge
    Chapter 24 Technologies for Deciphering Epigenomic DNA Patterns
  26. Altmetric Badge
    Chapter 25 Bioinformatics Tools for Genome-Wide Epigenetic Research
Attention for Chapter 9: Histone Modifications in Major Depressive Disorder and Related Rodent Models
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Histone Modifications in Major Depressive Disorder and Related Rodent Models
Chapter number 9
Book title
Neuroepigenomics in Aging and Disease
Published in
Advances in experimental medicine and biology, May 2017
DOI 10.1007/978-3-319-53889-1_9
Pubmed ID
Book ISBNs
978-3-31-953888-4, 978-3-31-953889-1
Authors

Deussing, Jan M., Jakovcevski, Mira, Jan M. Deussing Ph.D., Mira Jakovcevski Ph.D., Jan M. Deussing, Mira Jakovcevski

Editors

Raul Delgado-Morales

Abstract

Major depressive disorder (MDD) is a multifactorial disease, weakly linked to multiple genetic risk factors. In contrast to that, environmental factors and "gene × environment" interaction between specific risk genes and environmental factors, such as severe or early stress exposure, have been strongly linked to MDD vulnerability. Stressors can act on the interface between an organism and the environment, the epigenome. The molecular foundation for the impact of stressors on the risk to develop MDD is based on the hormonal stress response itself: the glucocorticoid receptor (GR, encoded by NR3C1). NR3C1 can directly interact with the epigenome in the cell nucleus. Besides DNA methylation, histone modifications have been reported to be crucial targets for the interaction with the stress response system. Here, we review critical findings on the impact of the most relevant histone modifications, i.e. histone acetylation and methylation, in the context of MDD and related animal models. We discuss new treatment options which have been based on these findings, including histone deacetylase inhibitors (HDACis) and drugs targeting specific histone marks, closely linked to psychiatric disease. In this context we talk about contemporary and future approaches required to fully understand (1) the epigenetics of stress-related disease and (2) the mode of action of potential MDD drugs targeting histone modifications. This includes harnessing the unprecedented potentials of genome-wide analysis of the epigenome and transcriptome, in a cell type-specific manner, and the use of epigenome editing technologies to clearly link epigenetic marks on specific genomic loci to functional relevance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 18%
Student > Ph. D. Student 9 18%
Student > Bachelor 5 10%
Researcher 5 10%
Other 2 4%
Other 4 8%
Unknown 17 33%
Readers by discipline Count As %
Neuroscience 9 18%
Biochemistry, Genetics and Molecular Biology 6 12%
Agricultural and Biological Sciences 5 10%
Pharmacology, Toxicology and Pharmaceutical Science 4 8%
Medicine and Dentistry 4 8%
Other 6 12%
Unknown 17 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2017.
All research outputs
#13,515,676
of 23,321,213 outputs
Outputs from Advances in experimental medicine and biology
#1,858
of 4,993 outputs
Outputs of similar age
#155,851
of 313,723 outputs
Outputs of similar age from Advances in experimental medicine and biology
#39
of 106 outputs
Altmetric has tracked 23,321,213 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,993 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,723 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.