↓ Skip to main content

Asymmetric Cell Division in Development, Differentiation and Cancer

Overview of attention for book
Cover of 'Asymmetric Cell Division in Development, Differentiation and Cancer'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Modeling Asymmetric Cell Division in Caulobacter crescentus Using a Boolean Logic Approach.
  3. Altmetric Badge
    Chapter 2 Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus.
  4. Altmetric Badge
    Chapter 3 Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae.
  5. Altmetric Badge
    Chapter 4 Wnt Signaling Polarizes C. elegans Asymmetric Cell Divisions During Development.
  6. Altmetric Badge
    Chapter 5 Asymmetric Cell Division in the One-Cell C. elegans Embryo: Multiple Steps to Generate Cell Size Asymmetry.
  7. Altmetric Badge
    Chapter 6 Size Matters: How C. elegans Asymmetric Divisions Regulate Apoptosis.
  8. Altmetric Badge
    Chapter 7 The Midbody and its Remnant in Cell Polarization and Asymmetric Cell Division.
  9. Altmetric Badge
    Chapter 8 Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions.
  10. Altmetric Badge
    Chapter 9 Asymmetric Divisions in Oogenesis.
  11. Altmetric Badge
    Chapter 10 Asymmetric Localization and Distribution of Factors Determining Cell Fate During Early Development of Xenopus laevis.
  12. Altmetric Badge
    Chapter 11 Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.
  13. Altmetric Badge
    Chapter 12 Asymmetric and Unequal Cell Divisions in Ascidian Embryos.
  14. Altmetric Badge
    Chapter 13 Asymmetries and Symmetries in the Mouse Oocyte and Zygote
  15. Altmetric Badge
    Chapter 14 Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division.
  16. Altmetric Badge
    Chapter 15 A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination.
  17. Altmetric Badge
    Chapter 16 Extracellular Regulation of the Mitotic Spindle and Fate Determinants Driving Asymmetric Cell Division.
  18. Altmetric Badge
    Chapter 17 Regulation of Asymmetric Cell Division in Mammalian Neural Stem and Cancer Precursor Cells
  19. Altmetric Badge
    Chapter 18 Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.
Attention for Chapter 10: Asymmetric Localization and Distribution of Factors Determining Cell Fate During Early Development of Xenopus laevis.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Asymmetric Localization and Distribution of Factors Determining Cell Fate During Early Development of Xenopus laevis.
Chapter number 10
Book title
Asymmetric Cell Division in Development, Differentiation and Cancer
Published in
Results and problems in cell differentiation, April 2017
DOI 10.1007/978-3-319-53150-2_10
Pubmed ID
Book ISBNs
978-3-31-953149-6, 978-3-31-953150-2
Authors

Sindelka, Radek, Sidova, Monika, Abaffy, Pavel, Kubista, Mikael, Radek Sindelka, Monika Sidova, Pavel Abaffy, Mikael Kubista

Editors

Jean-Pierre Tassan, Jacek Z. Kubiak

Abstract

Asymmetric division is a property of eukaryotic cells that is fundamental to the formation of higher life forms. Despite its importance, the mechanism behind it remains elusive. Asymmetry in the cell is induced by polarization of cell fate determinants that become unevenly distributed among progeny cells. So far dozens of determinants have been identified. Xenopus laevis is an ideal system to study asymmetric cell division during early development, because of the huge size of its oocytes and early-stage blastomeres. Here, we present the current knowledge about localization and distribution of cell fate determinants along the three body axes: animal-vegetal, dorsal-ventral, and left-right. Uneven distribution of cell fate determinants during early development specifies the formation of the embryonic body plan.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 50%
Student > Bachelor 2 33%
Student > Ph. D. Student 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 33%
Agricultural and Biological Sciences 2 33%
Immunology and Microbiology 1 17%
Neuroscience 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2017.
All research outputs
#14,340,404
of 22,963,381 outputs
Outputs from Results and problems in cell differentiation
#75
of 217 outputs
Outputs of similar age
#172,710
of 308,964 outputs
Outputs of similar age from Results and problems in cell differentiation
#9
of 29 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 217 research outputs from this source. They receive a mean Attention Score of 2.2. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,964 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.