↓ Skip to main content

Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Overview of attention for book
Cover of 'Sigma Receptors: Their Role in Disease and as Therapeutic Targets'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Sigma Receptors: Their Role in Disease and as Therapeutic Targets
  3. Altmetric Badge
    Chapter 2 Structural Perspectives on Sigma-1 Receptor Function
  4. Altmetric Badge
    Chapter 3 A Review of the Human Sigma-1 Receptor Structure
  5. Altmetric Badge
    Chapter 4 Fluorinated PET Tracers for Molecular Imaging of σ1 Receptors in the Central Nervous System
  6. Altmetric Badge
    Chapter 5 The Evolution of the Sigma-2 (σ2) Receptor from Obscure Binding Site to Bona Fide Therapeutic Target
  7. Altmetric Badge
    Chapter 6 Sigma 1 Receptor and Ion Channel Dynamics in Cancer
  8. Altmetric Badge
    Chapter 7 Sigma-1 Receptors Fine-Tune the Neuronal Networks
  9. Altmetric Badge
    Chapter 8 Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain
  10. Altmetric Badge
    Chapter 9 Sigma-1 Receptor Antagonists: A New Class of Neuromodulatory Analgesics
  11. Altmetric Badge
    Chapter 10 Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection
  12. Altmetric Badge
    Chapter 11 Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders
  13. Altmetric Badge
    Chapter 12 Role of Sigma-1 Receptor in Cocaine Abuse and Neurodegenerative Disease
  14. Altmetric Badge
    Chapter 13 Sigma Receptors and Substance Use Disorders
  15. Altmetric Badge
    Chapter 14 Stimulation of the Sigma-1 Receptor and the Effects on Neurogenesis and Depressive Behaviors in Mice
  16. Altmetric Badge
    Chapter 15 Role of σ1 Receptors in Learning and Memory and Alzheimer’s Disease-Type Dementia
  17. Altmetric Badge
    Chapter 16 Sigma-1 Receptor in Motoneuron Disease
  18. Altmetric Badge
    Chapter 17 The Sigma-1 Receptor–A Therapeutic Target for the Treatment of ALS?
  19. Altmetric Badge
    Chapter 18 The Role of Sigma1R in Mammalian Retina
  20. Altmetric Badge
    Chapter 19 Peeking into Sigma-1 Receptor Functions Through the Retina
  21. Altmetric Badge
    Chapter 20 The Role of Sigma 1 Receptor as a Neuroprotective Target in Glaucoma
Attention for Chapter 19: Peeking into Sigma-1 Receptor Functions Through the Retina
Altmetric Badge

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Peeking into Sigma-1 Receptor Functions Through the Retina
Chapter number 19
Book title
Sigma Receptors: Their Role in Disease and as Therapeutic Targets
Published in
Advances in experimental medicine and biology, March 2017
DOI 10.1007/978-3-319-50174-1_19
Pubmed ID
Book ISBNs
978-3-31-950172-7, 978-3-31-950174-1
Authors

Timur A. Mavlyutov, Lian-Wang Guo

Editors

Sylvia B. Smith, Tsung-Ping Su

Abstract

This review discusses recent advances towards understanding the sigma-1 receptor (S1R) as an endogenous neuro-protective mechanism in the retina , a favorable experimental model system. The exquisite architecture of the mammalian retina features layered and intricately wired neurons supported by non-neuronal cells. Ganglion neurons, photoreceptors , as well as the retinal pigment epithelium, are susceptible to degeneration that leads to major retinal diseases such as glaucoma , diabetic retinopathy , and age-related macular degeneration (AMD), and ultimately, blindness. The S1R protein is found essentially in every retinal cell type, with high abundance in the ganglion cell layer. Ultrastructural studies of photoreceptors, bipolar cells, and ganglion cells show a predominant localization of S1R in the nuclear envelope. A protective role of S1R for ganglion and photoreceptor cells is supported by in vitro and in vivo experiments. Most recently, studies suggest that S1R may also protect retinal neurons via its activities in Müller glia and microglia. The S1R functions in the retina may be attributed to a reduction of excitotoxicity, oxidative stress , ER stress response, or inflammation. S1R knockout mice are being used to delineate the S1R-specific effects. In summary, while significant progress has been made towards the objective of establishing a S1R-targeted paradigm for retinal neuro-protection , critical questions remain. In particular, context-dependent effects and potential side effects of interventions targeting S1R need to be studied in more diverse and more clinically relevant animal models.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 20%
Student > Bachelor 2 13%
Student > Master 2 13%
Professor 1 7%
Professor > Associate Professor 1 7%
Other 0 0%
Unknown 6 40%
Readers by discipline Count As %
Medicine and Dentistry 3 20%
Agricultural and Biological Sciences 2 13%
Nursing and Health Professions 1 7%
Biochemistry, Genetics and Molecular Biology 1 7%
Neuroscience 1 7%
Other 0 0%
Unknown 7 47%