↓ Skip to main content

Hidden Markov Models

Overview of attention for book
Cover of 'Hidden Markov Models'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Hidden Markov Models and Its Applications in Biology
  3. Altmetric Badge
    Chapter 2 HMMs in Protein Fold Classification
  4. Altmetric Badge
    Chapter 3 Application of Hidden Markov Models in Biomolecular Simulations
  5. Altmetric Badge
    Chapter 4 Predicting Beta Barrel Transmembrane Proteins Using HMMs
  6. Altmetric Badge
    Chapter 5 Predicting Alpha Helical Transmembrane Proteins Using HMMs
  7. Altmetric Badge
    Chapter 6 Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization
  8. Altmetric Badge
    Chapter 7 Analyzing Single Molecule FRET Trajectories Using HMM
  9. Altmetric Badge
    Chapter 8 Modelling ChIP-seq Data Using HMMs
  10. Altmetric Badge
    Chapter 9 Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence
  11. Altmetric Badge
    Chapter 10 Computationally Tractable Multivariate HMM in Genome-Wide Mapping Studies
  12. Altmetric Badge
    Chapter 11 Hidden Markov Models in Population Genomics
  13. Altmetric Badge
    Chapter 12 Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches
  14. Altmetric Badge
    Chapter 13 Finding RNA–Protein Interaction Sites Using HMMs
  15. Altmetric Badge
    Chapter 14 Automated Estimation of Mouse Social Behaviors Based on a Hidden Markov Model
  16. Altmetric Badge
    Chapter 15 Modeling Movement Primitives with Hidden Markov Models for Robotic and Biomedical Applications
Attention for Chapter 3: Application of Hidden Markov Models in Biomolecular Simulations
Altmetric Badge

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Application of Hidden Markov Models in Biomolecular Simulations
Chapter number 3
Book title
Hidden Markov Models
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6753-7_3
Pubmed ID
Book ISBNs
978-1-4939-6751-3, 978-1-4939-6753-7
Authors

Saurabh Shukla, Zahra Shamsi, Alexander S. Moffett, Balaji Selvam, Diwakar Shukla

Editors

David R. Westhead, M. S. Vijayabaskar

Abstract

Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 29%
Researcher 4 24%
Student > Master 3 18%
Unspecified 1 6%
Professor > Associate Professor 1 6%
Other 1 6%
Unknown 2 12%
Readers by discipline Count As %
Chemistry 4 24%
Chemical Engineering 2 12%
Agricultural and Biological Sciences 2 12%
Physics and Astronomy 2 12%
Biochemistry, Genetics and Molecular Biology 1 6%
Other 4 24%
Unknown 2 12%