↓ Skip to main content

Hidden Markov Models

Overview of attention for book
Cover of 'Hidden Markov Models'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Hidden Markov Models and Its Applications in Biology
  3. Altmetric Badge
    Chapter 2 HMMs in Protein Fold Classification
  4. Altmetric Badge
    Chapter 3 Application of Hidden Markov Models in Biomolecular Simulations
  5. Altmetric Badge
    Chapter 4 Predicting Beta Barrel Transmembrane Proteins Using HMMs
  6. Altmetric Badge
    Chapter 5 Predicting Alpha Helical Transmembrane Proteins Using HMMs
  7. Altmetric Badge
    Chapter 6 Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization
  8. Altmetric Badge
    Chapter 7 Analyzing Single Molecule FRET Trajectories Using HMM
  9. Altmetric Badge
    Chapter 8 Modelling ChIP-seq Data Using HMMs
  10. Altmetric Badge
    Chapter 9 Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence
  11. Altmetric Badge
    Chapter 10 Computationally Tractable Multivariate HMM in Genome-Wide Mapping Studies
  12. Altmetric Badge
    Chapter 11 Hidden Markov Models in Population Genomics
  13. Altmetric Badge
    Chapter 12 Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches
  14. Altmetric Badge
    Chapter 13 Finding RNA–Protein Interaction Sites Using HMMs
  15. Altmetric Badge
    Chapter 14 Automated Estimation of Mouse Social Behaviors Based on a Hidden Markov Model
  16. Altmetric Badge
    Chapter 15 Modeling Movement Primitives with Hidden Markov Models for Robotic and Biomedical Applications
Attention for Chapter 2: HMMs in Protein Fold Classification
Altmetric Badge

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
HMMs in Protein Fold Classification
Chapter number 2
Book title
Hidden Markov Models
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6753-7_2
Pubmed ID
Book ISBNs
978-1-4939-6751-3, 978-1-4939-6753-7
Authors

Christos Lampros, Costas Papaloukas, Themis Exarchos, Dimitrios I. Fotiadis

Editors

David R. Westhead, M. S. Vijayabaskar

Abstract

The limitation of most HMMs is their inherent high dimensionality. Therefore we developed several variations of low complexity models that can be applied even to protein families with a few members. In this chapter we present these variations. All of them include the use of a hidden Markov model (HMM), with a small number of states (called reduced state-space HMM), which is trained with both amino acid sequence and secondary structure of proteins whose 3D structure is known and it is used for protein fold classification. We used data from Protein Data Bank and annotation from SCOP database for training and evaluation of the proposed HMM variations for a number of protein folds that belong to major structural classes. Results indicate that the variations have similar performance, or even better in some cases, on classifying proteins than SAM, which is a widely used HMM-based method for protein classification. The major advantage of the proposed variations is that we employed a small number of states and the algorithms used for training and scoring are of low complexity and thus relatively fast. The main variations examined include a version of the reduced state-space HMM with seven states (7-HMM), a version of the reduced state-space HMM with three states (3-HMM) and an optimized version of the reduced state-space HMM with three states, where an optimization process is applied to its scores (optimized 3-HMM).

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 17%
Librarian 1 17%
Student > Ph. D. Student 1 17%
Professor > Associate Professor 1 17%
Unknown 2 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 17%
Computer Science 1 17%
Engineering 1 17%
Unknown 3 50%