↓ Skip to main content

Hidden Markov Models

Overview of attention for book
Cover of 'Hidden Markov Models'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction to Hidden Markov Models and Its Applications in Biology
  3. Altmetric Badge
    Chapter 2 HMMs in Protein Fold Classification
  4. Altmetric Badge
    Chapter 3 Application of Hidden Markov Models in Biomolecular Simulations
  5. Altmetric Badge
    Chapter 4 Predicting Beta Barrel Transmembrane Proteins Using HMMs
  6. Altmetric Badge
    Chapter 5 Predicting Alpha Helical Transmembrane Proteins Using HMMs
  7. Altmetric Badge
    Chapter 6 Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization
  8. Altmetric Badge
    Chapter 7 Analyzing Single Molecule FRET Trajectories Using HMM
  9. Altmetric Badge
    Chapter 8 Modelling ChIP-seq Data Using HMMs
  10. Altmetric Badge
    Chapter 9 Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence
  11. Altmetric Badge
    Chapter 10 Computationally Tractable Multivariate HMM in Genome-Wide Mapping Studies
  12. Altmetric Badge
    Chapter 11 Hidden Markov Models in Population Genomics
  13. Altmetric Badge
    Chapter 12 Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches
  14. Altmetric Badge
    Chapter 13 Finding RNA–Protein Interaction Sites Using HMMs
  15. Altmetric Badge
    Chapter 14 Automated Estimation of Mouse Social Behaviors Based on a Hidden Markov Model
  16. Altmetric Badge
    Chapter 15 Modeling Movement Primitives with Hidden Markov Models for Robotic and Biomedical Applications
Attention for Chapter 4: Predicting Beta Barrel Transmembrane Proteins Using HMMs
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Predicting Beta Barrel Transmembrane Proteins Using HMMs
Chapter number 4
Book title
Hidden Markov Models
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6753-7_4
Pubmed ID
Book ISBNs
978-1-4939-6751-3, 978-1-4939-6753-7
Authors

Georgios N. Tsaousis, Stavros J. Hamodrakas, Pantelis G. Bagos

Editors

David R. Westhead, M. S. Vijayabaskar

Abstract

Transmembrane beta-barrels (TMBBs) constitute an important structural class of membrane proteins located in the outer membrane of gram-negative bacteria, and in the outer membrane of chloroplasts and mitochondria. They are involved in a wide variety of cellular functions and the prediction of their transmembrane topology, as well as their discrimination in newly sequenced genomes is of great importance as they are promising targets for antimicrobial drugs and vaccines. Several methods have been applied for the prediction of the transmembrane segments and the topology of beta barrel transmembrane proteins utilizing different algorithmic techniques. Hidden Markov Models (HMMs) have been efficiently used in the development of several computational methods used for this task. In this chapter we give a brief review of different available prediction methods for beta barrel transmembrane proteins pointing out sequence and structural features that should be incorporated in a prediction method. We then describe the procedure of the design and development of a Hidden Markov Model capable of predicting the transmembrane beta strands of TMBBs and discriminating them from globular proteins.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Greece 1 8%
Unknown 11 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 17%
Professor 2 17%
Student > Bachelor 1 8%
Student > Master 1 8%
Student > Postgraduate 1 8%
Other 0 0%
Unknown 5 42%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 33%
Biochemistry, Genetics and Molecular Biology 2 17%
Medicine and Dentistry 1 8%
Unknown 5 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 February 2017.
All research outputs
#18,534,624
of 22,955,959 outputs
Outputs from Methods in molecular biology
#7,935
of 13,137 outputs
Outputs of similar age
#238,160
of 311,194 outputs
Outputs of similar age from Methods in molecular biology
#155
of 266 outputs
Altmetric has tracked 22,955,959 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,137 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,194 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 266 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.