↓ Skip to main content

Microchip Diagnostics

Overview of attention for book
Cover of 'Microchip Diagnostics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples.
  3. Altmetric Badge
    Chapter 2 Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
  4. Altmetric Badge
    Chapter 3 Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists.
  5. Altmetric Badge
    Chapter 4 Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
  6. Altmetric Badge
    Chapter 5 Using Electrophoretic Immunoassay to Monitor Hormone Secretion.
  7. Altmetric Badge
    Chapter 6 On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
  8. Altmetric Badge
    Chapter 7 Digital Microfluidics Assisted Sealing of Individual Magnetic Particles in Femtoliter-Sized Reaction Wells for Single-Molecule Detection.
  9. Altmetric Badge
    Chapter 8 Microfluidic DNA Stretching Device for Single-Molecule Diagnostics.
  10. Altmetric Badge
    Chapter 9 Droplet Microfluidic and Magnetic Particles Platform for Cancer Typing.
  11. Altmetric Badge
    Chapter 10 SlipChip Device for Digital Nucleic Acid Amplification.
  12. Altmetric Badge
    Chapter 11 Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion.
  13. Altmetric Badge
    Chapter 12 Droplet-Based Microfluidics Digital PCR for the Detection of KRAS Mutations.
  14. Altmetric Badge
    Chapter 13 Negative Enrichment of Circulating Tumor Cells in Blood Using a Microfluidic Chip.
  15. Altmetric Badge
    Chapter 14 Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection.
  16. Altmetric Badge
    Chapter 15 Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
  17. Altmetric Badge
    Chapter 16 FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells.
Attention for Chapter 8: Microfluidic DNA Stretching Device for Single-Molecule Diagnostics.
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Microfluidic DNA Stretching Device for Single-Molecule Diagnostics.
Chapter number 8
Book title
Microchip Diagnostics
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6734-6_8
Pubmed ID
Book ISBNs
978-1-4939-6732-2, 978-1-4939-6734-6
Authors

Daisuke Onoshima, Yoshinobu Baba

Editors

Valérie Taly, Jean-Louis Viovy, Stéphanie Descroix

Abstract

The method described here enables the automatic stretching and patterning of single DNA molecules onto a solid surface. It does not require chemical modification of the DNA or surface modification of the substrate. To detect a signal variation caused by sequence-specific dye binding or partial melting, it is crucial that the DNA molecules are arrayed in a parallel direction inside the narrow microscopic field. The method uses zigzag-shaped microgrooves in a densely-arranged molecular patterning apparatus in a microfluidic channel. By syringing through the microchannel, over 1500 DNA molecules can be arrayed simultaneously in the microgrooves. It will therefore serve as a template preparation for DNA molecular diagnosis by high-resolution imaging.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 50%
Professor 1 25%
Unknown 1 25%
Readers by discipline Count As %
Chemical Engineering 1 25%
Engineering 1 25%
Unknown 2 50%