↓ Skip to main content

Synapse Development

Overview of attention for book
Cover of 'Synapse Development'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Cell Culture System to Investigate the Presynaptic Control of Subsynaptic Membrane Differentiation at the Neuromuscular Junction.
  3. Altmetric Badge
    Chapter 2 Co-culture Synaptogenic Assay: A New Look at Fluorescence Reporters and Technological Devices.
  4. Altmetric Badge
    Chapter 3 Synaptogenic Assays Using Neurons Cultured on Micropatterned Substrates.
  5. Altmetric Badge
    Chapter 4 Monitoring Synapses Via Trans-Synaptic GFP Complementation.
  6. Altmetric Badge
    Chapter 5 Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
  7. Altmetric Badge
    Chapter 6 Biochemical Purification of Binding Partners of Synaptic Scaffold Proteins.
  8. Altmetric Badge
    Chapter 7 In Situ Protein Binding Assay Using Fc-Fusion Proteins.
  9. Altmetric Badge
    Chapter 8 Reconstitution of Synaptic SNAREs into Large Liposomes with Reduced Curvature Stress.
  10. Altmetric Badge
    Chapter 9 Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.
  11. Altmetric Badge
    Chapter 10 Purification of Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting.
  12. Altmetric Badge
    Chapter 11 Optimized Protocol for Imaging Cleared Neural Tissues Using Light Microscopy.
  13. Altmetric Badge
    Chapter 12 Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.
  14. Altmetric Badge
    Chapter 13 3D d STORM Imaging of Fixed Brain Tissue.
  15. Altmetric Badge
    Chapter 14 Synapse Development
  16. Altmetric Badge
    Chapter 15 3D Analysis of Synaptic Ultrastructure in Organotypic Hippocampal Slice Culture by High-Pressure Freezing and Electron Tomography.
  17. Altmetric Badge
    Chapter 16 Analyzing Endosomal Docking, Fusion, Sorting, and Budding Mechanisms in Isolated Organelles.
  18. Altmetric Badge
    Chapter 17 Concurrent Imaging of Receptor Trafficking and Calcium Dynamics by Spinning Disk Confocal Microscopy.
  19. Altmetric Badge
    Chapter 18 Imaging Activity-Dependent Signaling Dynamics at the Neuronal Synapse Using FRET-Based Biosensors.
  20. Altmetric Badge
    Chapter 19 Analyzing Structural Plasticity of Dendritic Spines in Organotypic Slice Culture.
  21. Altmetric Badge
    Chapter 20 Using Fluorescent Markers to Estimate Synaptic Connectivity In Situ.
  22. Altmetric Badge
    Chapter 21 Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.
  23. Altmetric Badge
    Chapter 22 Mapping Synaptic Inputs of Developing Neurons Using Calcium Imaging.
  24. Altmetric Badge
    Chapter 23 Monosynaptic Tracing in Developing Circuits Using Modified Rabies Virus.
Attention for Chapter 1: A Cell Culture System to Investigate the Presynaptic Control of Subsynaptic Membrane Differentiation at the Neuromuscular Junction.
Altmetric Badge

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Cell Culture System to Investigate the Presynaptic Control of Subsynaptic Membrane Differentiation at the Neuromuscular Junction.
Chapter number 1
Book title
Synapse Development
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6688-2_1
Pubmed ID
Book ISBNs
978-1-4939-6686-8, 978-1-4939-6688-2
Authors

Nadine Schmidt, Sreya Basu, Stephan Kröger, Hans Rudolf Brenner

Editors

Alexandros Poulopoulos

Abstract

For decades the neuromuscular junction (NMJ) has been a favorite preparation to investigate basic mechanisms of synaptic function and development. As its function is to transmit action potentials in a 1:1 ratio from motor neurons to muscle fibers, the NMJ shows little or no functional plasticity, a property that makes it poorly suited to investigate mechanisms of use-dependent adaptations of synaptic function, which are thought to underlie learning and memory formation in the brain. On the other hand, the NMJ is unique in that the differentiation of the subsynaptic membrane is regulated by one major factor secreted from motor neurons, agrin. As a consequence, myotubes grown on a laminin substrate that is focally impregnated with recombinant neural agrin closely resemble the situation in vivo, where agrin secreted from motor neurons binds to the basal lamina of the NMJ's synaptic cleft to induce and maintain the subsynaptic muscle membrane. We provide here a detailed protocol through which acetylcholine receptor clusters are induced in cultured myotubes contacting laminin-attached agrin, enabling molecular, biochemical and cell biological analyses including high resolution microscopy in 4D. This preparation is ideally suited to investigate the mechanisms involved in the assembly of the postsynaptic muscle membrane, providing distinct advantages over inducing AChR clusters using soluble agrin.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 1 25%
Student > Master 1 25%
Unknown 2 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 50%
Neuroscience 1 25%
Unknown 1 25%