↓ Skip to main content

High-Throughput Screening Assays in Toxicology

Overview of attention for book
Cover of 'High-Throughput Screening Assays in Toxicology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Monitoring Ligand-Activated Protein–Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay
  3. Altmetric Badge
    Chapter 2 Mitochondrial Membrane Potential Assay
  4. Altmetric Badge
    Chapter 3 High-Throughput Screening Assays in Toxicology
  5. Altmetric Badge
    Chapter 4 Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators
  6. Altmetric Badge
    Chapter 5 Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity
  7. Altmetric Badge
    Chapter 6 Cell-Based Assay for Identifying the Modulators of Antioxidant Response Element Signaling Pathway
  8. Altmetric Badge
    Chapter 7 Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells
  9. Altmetric Badge
    Chapter 8 Determination of Histone H2AX Phosphorylation in DT40 Cells
  10. Altmetric Badge
    Chapter 9 High-Throughput and High-Content Micronucleus Assay in CHO-K1 Cells
  11. Altmetric Badge
    Chapter 10 High-Throughput Screening Assays in Toxicology
  12. Altmetric Badge
    Chapter 11 High-Throughput Screening Assays in Toxicology
  13. Altmetric Badge
    Chapter 12 A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling
  14. Altmetric Badge
    Chapter 13 Correction of Microplate Data from High-Throughput Screening
  15. Altmetric Badge
    Chapter 14 CurveP Method for Rendering High-Throughput Screening Dose-Response Data into Digital Fingerprints
  16. Altmetric Badge
    Chapter 15 Accounting Artifacts in High-Throughput Toxicity Assays
  17. Altmetric Badge
    Chapter 16 Accessing the High-Throughput Screening Data Landscape
  18. Altmetric Badge
    Chapter 17 Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling
Attention for Chapter 17: Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling
Altmetric Badge

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling
Chapter number 17
Book title
High-Throughput Screening Assays in Toxicology
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-6346-1_17
Pubmed ID
Book ISBNs
978-1-4939-6344-7, 978-1-4939-6346-1
Authors

Marlene T. Kim, Wenyi Wang, Alexander Sedykh, Hao Zhu, Kim, Marlene T., Wang, Wenyi, Sedykh, Alexander, Zhu, Hao

Abstract

Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high-throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling requires the assistance of automated data curation tools. Using automated data curation tools are beneficial to users, especially ones without prior computer skills, because many platforms have been developed and optimized based on standardized requirements. As a result, the users do not need to extensively configure the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to curate and prepare HTS data for QSAR modeling purposes will be described.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 20%
Researcher 3 20%
Student > Bachelor 1 7%
Professor 1 7%
Student > Doctoral Student 1 7%
Other 4 27%
Unknown 2 13%
Readers by discipline Count As %
Chemistry 4 27%
Computer Science 4 27%
Pharmacology, Toxicology and Pharmaceutical Science 2 13%
Arts and Humanities 1 7%
Medicine and Dentistry 1 7%
Other 1 7%
Unknown 2 13%