↓ Skip to main content

High-Throughput Screening Assays in Toxicology

Overview of attention for book
Cover of 'High-Throughput Screening Assays in Toxicology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Monitoring Ligand-Activated Protein–Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay
  3. Altmetric Badge
    Chapter 2 Mitochondrial Membrane Potential Assay
  4. Altmetric Badge
    Chapter 3 High-Throughput Screening Assays in Toxicology
  5. Altmetric Badge
    Chapter 4 Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators
  6. Altmetric Badge
    Chapter 5 Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity
  7. Altmetric Badge
    Chapter 6 Cell-Based Assay for Identifying the Modulators of Antioxidant Response Element Signaling Pathway
  8. Altmetric Badge
    Chapter 7 Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells
  9. Altmetric Badge
    Chapter 8 Determination of Histone H2AX Phosphorylation in DT40 Cells
  10. Altmetric Badge
    Chapter 9 High-Throughput and High-Content Micronucleus Assay in CHO-K1 Cells
  11. Altmetric Badge
    Chapter 10 High-Throughput Screening Assays in Toxicology
  12. Altmetric Badge
    Chapter 11 High-Throughput Screening Assays in Toxicology
  13. Altmetric Badge
    Chapter 12 A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling
  14. Altmetric Badge
    Chapter 13 Correction of Microplate Data from High-Throughput Screening
  15. Altmetric Badge
    Chapter 14 CurveP Method for Rendering High-Throughput Screening Dose-Response Data into Digital Fingerprints
  16. Altmetric Badge
    Chapter 15 Accounting Artifacts in High-Throughput Toxicity Assays
  17. Altmetric Badge
    Chapter 16 Accessing the High-Throughput Screening Data Landscape
  18. Altmetric Badge
    Chapter 17 Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling
Attention for Chapter 3: High-Throughput Screening Assays in Toxicology
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
High-Throughput Screening Assays in Toxicology
Chapter number 3
Book title
High-Throughput Screening Assays in Toxicology
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-6346-1_3
Pubmed ID
Book ISBNs
978-1-4939-6344-7, 978-1-4939-6346-1
Authors

Khuc, Thai, Hsu, Chia-Wen Amy, Sakamuru, Srilatha, Xia, Menghang, Thai Khuc, Chia-Wen (Amy) Hsu, Srilatha Sakamuru, Menghang Xia, Hsu, Chia-Wen (Amy)

Abstract

The hypoxia-inducible factor 1 (HIF-1) is a transcriptional factor involved in the regulation of oxygen within cellular environments. In hypoxic tissues or those with inadequate oxygen concentrations, activation of the HIF-1 transcription factor allows for subsequent activation of target gene expression implicated in cell survival. As a result, cells proliferate through formation of new blood vessels and expansion of vascular systems, providing necessary nourishment needed of cells. HIF-1 is also involved in the complex pathophysiology associated with cancer cells. Solid tumors are able to thrive in hypoxic environments by overactivating these target genes in order to grow and metastasize. Therefore, it is of high importance to identify modulators of the HIF-1 signaling pathway for possible development of anticancer drugs and to better understand how environmental chemicals cause cancer. Using a quantitative high-throughput screening (qHTS) approach, we are able to screen large chemical libraries to profile potential small molecule modulators of the HIF-1 signaling pathway in a 1536-well format. This chapter describes two orthogonal cell based assays; one utilizing a β-lactamase reporter gene incorporated into human ME-180 cervical cancer cells, and the other using a NanoLuc luciferase reporter system in human HCT116 colon cancer cells. Cell viability assays for each cell line are also conducted respectively. The data from this screening platform can be used as a gateway to study mode of action (MOA) of selected compounds and drug classes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 22%
Student > Ph. D. Student 1 11%
Professor > Associate Professor 1 11%
Researcher 1 11%
Student > Master 1 11%
Other 0 0%
Unknown 3 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 33%
Medicine and Dentistry 2 22%
Agricultural and Biological Sciences 1 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Unknown 2 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2016.
All research outputs
#17,812,370
of 22,882,389 outputs
Outputs from Methods in molecular biology
#7,245
of 13,131 outputs
Outputs of similar age
#267,794
of 393,707 outputs
Outputs of similar age from Methods in molecular biology
#752
of 1,471 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,131 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,707 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.