↓ Skip to main content

Molecular Mechanisms of Notch Signaling

Overview of attention for book
Attention for Chapter 16: Control of Blood Vessel Formation by Notch Signaling
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Control of Blood Vessel Formation by Notch Signaling
Chapter number 16
Book title
Molecular Mechanisms of Notch Signaling
Published in
Advances in experimental medicine and biology, January 2018
DOI 10.1007/978-3-319-89512-3_16
Pubmed ID
Book ISBNs
978-3-31-989511-6, 978-3-31-989512-3
Authors

Fabian Tetzlaff, Andreas Fischer, Tetzlaff, Fabian, Fischer, Andreas

Abstract

Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and tumor progression. Recent data indicate a pivotal role for blood vessels in responding to metabolic changes and that endothelial cell metabolism is a novel regulator of angiogenesis. The Notch pathway is the central signaling mode that cooperates with VEGF, WNT, BMP, TGF-β, angiopoietin signaling and cell metabolism to orchestrate angiogenesis, tip/stalk cell selection and arteriovenous specification. Here, we summarize the current knowledge and implications regarding the complex roles of Notch signaling during physiological and tumor angiogenesis, the dynamic nature of tip/stalk cell selection in the nascent vessel sprout and arteriovenous differentiation. Furthermore, we shed light on recent work on endothelial cell metabolism, perfusion-independent angiocrine functions of endothelial cells in organ-specific vascular beds and how manipulation of Notch signaling may be used to target the tumor vasculature.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 16%
Student > Master 7 16%
Unspecified 4 9%
Student > Bachelor 4 9%
Researcher 4 9%
Other 7 16%
Unknown 10 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 23%
Medicine and Dentistry 7 16%
Agricultural and Biological Sciences 6 14%
Unspecified 4 9%
Business, Management and Accounting 1 2%
Other 2 5%
Unknown 13 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2018.
All research outputs
#15,540,879
of 23,096,849 outputs
Outputs from Advances in experimental medicine and biology
#2,528
of 4,976 outputs
Outputs of similar age
#270,149
of 442,670 outputs
Outputs of similar age from Advances in experimental medicine and biology
#111
of 237 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,976 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,670 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 237 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.